UPDATED SITE CONCEPTUAL MODEL AND REQUEST FOR LOW RISK CLOSURE

11630-11700 Burke Street Santa Fe Springs, CA 90670 (RWQCB SCP Case No. 1238)

Prepared for: LARRY PATSOURAS 11700 Burke Street Santa Fe Springs, CA 90670

Submitted to:

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD LOS ANGELES REGION 320 W. 4th Street, Suite 200 Los Angeles, CA 90013

EAI Project No. 1576

June 17, 2010

Prepared by:

ENVIRONMENTAL AUDIT, INC.®

1000-A Ortega Way Placentia, CA 92870 (714) 632-8521

TABLE OF CONTENTS

1.0	INTR	ODUCTION 1	l
	1,1	BACKGROUND INFORMATION	l
		1.1.1 Historical Land Use	į
2.0	SUM	MARY OF PRIOR INVESTIGATIONS	3
	2.1	PHASE I SITE ASSESSMENT	3
	2.2	PHASE II SITE ASSESSMENT	3
	2.3	SUPPLEMENTAL SITE ASSESSMENTS 4	4
	2.4	REMOVAL OF UNDERGROUND STORAGE TANKS 5	5
	2.5	REMOVAL OF STORM WATER CLARIFIER5	5
	2.6	SOIL REMEDIATION – 2006	
	2.7	CLOSURE OF SUBSURFACE UNITS 20097	7
	2.8	REMOVAL OF HYDROCARBON IMPACTED SOIL TO A DEPTH OF	
		10 FEET BGS AND REMOVAL OF SUBSURFACE UNIT 6 - 2010	7
	2.9	GROUND WATER MONITORING	7
	2.10	SOIL GAS SURVEY	8
3.0	OFF-	SITE IMPACTED PROPERTIES 10	0
	3.1	PILOT CHEMICAL	0
	3.2	PHIBRO-TECH, INC	0
	3.3	REGIONAL IMPACT	1
4.0	HUM	IAN HEALTH SCREENING EVALUATION 12	2
	4.1	SOIL	2
		4.1.1 Hydrocarbons	2
		4.1.2 Title 22 Metals	
	4.2	SOIL GAS	4
		4.2.1 Chemicals of Concern	4
		4.2.2 Exposure Pathways	5
		4.2.3 Exposure Concentrations and Chemicals	
		4.2.4 Toxicity Values	
		4.2.4.1 Carcinogenic Health Effects	
		4.2.4.2 Non-Carcinogenic Health Effects	
		4.2.5 Risk Characterization Summary	
		4.2.5.1 Carcinogenic Risks	
		4.2.5.2 Non-Carcinogenic Health Hazards	
		4.2.6 Uncertainty Analysis	
		4.2.7 Conclusions	

TABLE OF CONTENTS

	5.0	DISC	USSION AND REQUEST FOR LOW RISK CLOSURE	21
		5.1	Soil Analysis	21
		5.3	Request for Low Risk Closure	
6.0	L1MIT	CATIC	ON	27
7.0	REFE	RENC	ŒS	28

TABLE OF CONTENTS

TABLES:

- 1: Historical (1994 2010) Soil Testing Results Hydrocarbons
- 2: Historical (1994 2009) Soil Testing Results Title 22 Metals
- 3: Summary of Ground Water Elevation and Testing Results Hydrocarbons
- 4: Summary of Ground Water Testing Results Metals
- Soil Testing Results BEA Remediation August 2006
- 6: Soil Testing Results EAI Subsurface Units Removal February 2009
- 7: Summary of Well Construction Data
- 8: Soil Gas Testing Results VOCs EPA Method 8260B
- 9: Soil Gas Testing Results VOCs EPA Method TO-15
- Summary of VOCs in Ground Water Beneath Pilot Chemical and Phibro-Tech, Inc. Sites
- 11: Toxicity Criteria Human Health Screening Evaluation
- Vapor Intrusion Health Risk Evaluation Using Soil Gas Data (Maximum Concentrations Detected) from 5 Feet
- 13: Vapor Intrusion Health Risk Evaluation Using Soil Gas Data (Maximum Concentrations Detected) from 15 Feet
- 14: Vapor Intrusion Health Risk Evaluation Using Soil Gas Data (95% UCL for PCE and Maximum Concentrations Detected) from 15 Feet

FIGURES:

- 1: Site Location Map
- 2: Site Plan
- 3: Historical Media Sampling Locations
- 4: BEA Remedial Excavations August 2006
- Subsurface Units Closed in February 2009
- 6: Soil Gas Sampling Locations
- 7: Aerial Vicinity Map
- 8: Central Basin Ground Water PCE Plume
- 9: Site Conceptual Model
- 10: Cross-Section A-A'
- 11: Cross-Section Location Map
- 12: Percent of Hydrocarbons within Individual Carbon Chain Ranges

APPENDICES:

- A: Boring Logs
- B: Well Construction Details

1.0 INTRODUCTION

This report constitutes an Updated Site Conceptual Model and Request for Low Risk Closure for the real property identified as 11630 - 11700 Burke Street, Santa Fe Springs, Los Angeles County, California 90670 (Site) (see Figure 1). This report summarizes the results of soil, ground water, soil gas, and human health screening evaluations completed at the Site, and includes a request for a low risk closure for the Site. EAI was retained by Mr. Larry Patsouras, the current property owner, to prepare this report.

Assessment efforts associated with the Site are currently being overseen by the California Regional Water Quality Control Board, Los Angeles Region (RWQCB). Mrs. Ann Lin is the RWQCB Case Manager assigned to the Site and the Site Cleanup Program Case Number is 1238.

1.1 BACKGROUND INFORMATION

The Site, approximately 8.5 acres, is identified by the County of Los Angeles as Assessor's Parcel Number 8168-001-008. For reporting purposes the Site has been divided into the "East Parcel" where Mr. Patsouras operates El Greco, a wholesale grocery warehouse, and the "West Parcel" where Talco Plastics formerly operated until 1997 (see Figure 2). All of the former Talco Plastics facilities, except an office building, were removed from the West Parcel of the Site pursuant to permits issued by the City of Santa Fe Springs.

Historically, the Site Mitigation Unit (SMU), Health Hazardous Materials Division, County of Los Angeles Fire Department was initially working on environmental issues associated with the Site. On June 4, 1997, the SMU forwarded a letter to Mr. Jim Ross of the RWQCB transferring the case to the RWQCB due to the presence of chemicals, e.g., tetrachloroethene (PCE) and trichloroethene (TCE) detected in ground water beneath the Site.

1.1.1 Historical Land Use

Globe International, Inc. (Globe), a manufacturer of oil well drilling equipment and tools, occupied the Site beginning in or about 1968. Prior to that time the Site was reportedly undeveloped (see AIG, 1994). Palley Supply Company (Palley), a government surplus order house, occupied the Site beginning in 1973. Max Rouse & Sons, Inc., industrial auctioneers, occupied the East Parcel beginning in 1981, followed by Master Box and Paper Company beginning in 1987, and El Greco in 1997. Talco Plastics occupied the West Parcel between about 1983 and 1997. Talco Plastics was in the business of reprocessing plastic resins, i.e., plastic scrap purchased from various sources was ground and further palletized by extrusion.

In 1970, Globe received a Notice of Violation (NOV) from the Los Angeles County Engineer for discharging of liquid waste to the ground surface. An analysis of the waste discharged indicated high levels of dissolved solids. The waste was the result of steam cleaning and degreasing operations of steel parts prior to painting. Oil and grease in the wastewater were not analyzed at

11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

that time. Subsequently, Globe installed a waste disposal system in which liquid waste flowed out into the sewer after passing through two three-compartment interceptors/clarifiers. Solid sedimentary waste products consisting of chemicals, grease, sand and steel scales estimated at 15-20 cubic feet per month was reportedly pumped from the interceptors/clarifiers and disposed of by private vendors.

In 1978, Palley received a NOV from the City of Santa Fe Springs for discharge of industrial wastewater to the public sewer system. Palley, who was engaged in hydraulic equipment maintenance, was discharging industrial waste from a steam cleaning operation through one or both of the interceptors/clarifiers described above, to the sanitary sewer.

In 1987, the County of Los Angeles Department of Health Services requested a criminal complaint to be filed by the District Attorney's office against Palley. The complaint was associated with the presence of the two subsurface structures (interceptors/clarifiers) consisting of three compartments and each compartment containing a black oily liquid resembling waste oil. Palley ceased these operations in 1987.

In 1988, following overflow of the abandoned clarifiers onto the East Parcel of the Site during a rain storm, the City of Santa Fe Springs Fire Department directed Mr. Palley, the property owner at that time, to properly dispose of the waste contained in the two clarifiers and the approximately twenty 55-gallon drums also containing waste located directly adjacent to the clarifiers. Records indicated that 3,500 gallons of waste liquid were removed from the Site on November 15, 1988. The clarifiers were reportedly subsequently abandoned by filling them with sand and concrete.

2.0 SUMMARY OF PRIOR INVESTIGATIONS

2.1 PHASE I SITE ASSESSMENT

In June 1994 AIG Consultants, Inc. (AIG) completed a Phase I Environmental Site Assessment of the Site (see AIG, 1994). The Site at that time was owned by Mr. William Palley and the West Parcel was occupied by Talco Plastics and the East Parcel contained a warehouse that was vacant (see Figure 2). The purpose of the assessment was to identify any known or potential environmental problems at the Site. Based upon their investigation, AIG concluded that there was evidence of past activity at the Site which may represent environmental risks and/or liabilities, and therefore, AIG recommended that a Phase II investigation be performed to determine the presence or absence of contamination.

2.2 PHASE II SITE ASSESSMENT

In August 1994, Professional Service Industries, Inc. (PSII) completed a Phase II investigation of the Site (see PSII, 1994). Based on review of the AIG Phase I report and a walk-through and inspection of the property, PSII drilled and sampled eight borings (B-1 through B-8) ranging in depth from 4.5 to 35 feet below ground surface (bgs), and four hand auger borings (HA-1 through HA-4) on the Site. See Appendix A for boring logs. These soil sampling locations targeted the following areas of the Site (see Figure 3):

LOCATION	BORING
East Parcel	-
- Storage Shed	HA-1
- Ahandoned Clarifiers	B-6, B-7
- Historical Stained Areas	B-1, B-2, B-3, B-4, B-8
West Parcel	
- Clarifiers (Historical Paint/Steam Cleaning Area)	HA-2, HA-3
- Maintenance Shop (Clarifier)	B-5
- Equipment Storage (Stained Area)	HA-4

Soil samples were selectively analyzed for total petroleum hydrocarbons (TPH) by modified EPA Method 8015, volatile organic compounds (VOCs) by EPA Method 8260, and Title 22 metals by EPA Methods 6010/7471. The results of the hydrocarbon testing are summarized on Table 1 and metal testing on Table 2.

For comparison purposes, Table 1 and Tahle 2 include Soil Screening Levels (SSLs) based on use of RWQCB attenuation factor guidance (see RWQCB, 1996A and 1996B), California Human Health Screening Levels (CHHSLs) for residential land use and commercial/industrial land use (see Cal-EPA, 2005), and EPA Region 9 Screening Levels for Chemical Contaminants (SLCCs) at Superfund Sites for residential land use and commercial/industrial land use (see EPA, 2008).

2.3 SUPPLEMENTAL SITE ASSESSMENTS

Supplemental assessments of the Site were completed by EAI in 1994 (see EAI, 1995), 1996 (see EAI, 1997) and 1999 (see EAI, 1999). These investigations included:

- 1994: Drilling and sampling of borings E-1 through E-17, and installation of ground water monitoring well MW-1. Borings E-1 through E-17 ranged in depth from 10 to 45 feet bgs. Note four attempts were made to advance boring E-13; however, auger refusal was encountered at each location. Ground water was encountered beneath the Site at a depth of about 36 feet bgs, and therefore, well MW-1 was terminated at a depth of 53 feet bgs and slotted between 33 and 53 feet bgs.
- 1996: Near surface soil sampling locations SS-1, SS-2, SS-3, SS-4 and SS-5, and installation of ground water monitoring well MW-2.
- 1999: Drilling and sampling of borings S-1 through S-10 (each 10 foot deep) and sample location Pit.

These media sampling locations targeted the following areas of the Site (see Figure 3):

LOCATION	BORING
East Parcel	
- Storage Shed	E-8, E-9, E-11
- Abandoned Clarifiers	E-7, E-14, E-15
- Historical Stained Areas	E-10, E-12, SS-1, SS-2,
	SS-3, SS-4
West Parcel	
- Underground Storage Tanks	E-1, E-2, E-3, E-4
- Clarifiers (Historical Paint/Steam Cleaning Area)	E-5, E-6, S-3, S-4, S-5,
	S-6, S-7, S-8, Pit
- Mechanical Pit	E-16
- Maintenance Shop (Clarifier)	E-17, S-1, S-2
- Removed Storm Water Clarifier	S-9, S-10

Selected soil samples were analyzed for TPH as gasoline (TPH-G), as diesel (TPH-D) and as oil (TPH-O) by modified EPA Method 8015M, total recoverable petroleum hydrocarbons (TRPH) by EPA Method 418.1, VOCs by EPA Methods 8020, 8240 and 8260, Title 22 metals, semi-volatile organic compounds (SVOCs) by EPA Method 8270C, and polychlorinated biphenyls (PCBs) by EPA Method 8082. See Table 1 and Table 2 for soil testing results.

Ground water well MW-1 was located in the central area of the Site near the former storage shed and clarifiers, and MW-2 in the northeastern area of the Site (see Figure 3). Based on ground water elevation data for two adjacent properties with known soil and ground water contamination (see Section 4.0) the ground water flow for the area is westerly-southwesterly.

11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

Ground water samples were collected and analyzed for hydrocarbons and Title 22 Metals. Table 3 summarizes the ground water quality data for hydrocarbons and Table 4 for metals.

2.4 REMOVAL OF UNDERGROUND STORAGE TANKS

In April 1998, two USTs (one diesel and one gasoline) were removed from the Site by Advanced GeoEnvironmental, Inc. (AGI) pursuant to a permit issued by the SFSFD. The dispenser (fuel) island and product piping were located directly over the two USTs. Five soil samples were collected from beneath the USTs following removal, i.e., two (B1A and B1B) from beneath the gasoline UST and three (B2A, B2B and B2C) from beneath the diesel UST (see Figure 3). Two samples (SP1 and SP2) of the soil excavated during USTs removal activities were also collected for analysis.

The soil samples collected from beneath the gasoline UST were analyzed for TPH-G, BTEX and MTBE, the samples beneath the diesel UST for TPH-G, TPH-D, BTEX and MTBE, and the stockpiled soil for TPH-G, TPH-D, TRPH, BTEX and MTBE (see AGI, 1998). No chemicals were detected in five soil samples collected from beneath the USTs (see Table 1). TRPH at a maximum concentration of 20 mg/kg was the only chemical detected in the stockpiled soil.

Based on review of AGI, 1998 the SFSFD issued a no further action (NFA) letter for the USTs dated May 1, 1998.

It should be noted that Amnat Environmental & Geotechnical (AEG) completed a Leak Detection Investigation of the USTs in 1995 for the Los Angeles County Department of Public Works. The investigation included the drilling and sampling of six borings, i.e., boring B-1 and B-3 to 40 feet bgs, B-5 and B-6 to 20 feet bgs, and B-2 and B-4 to 5 feet bgs (see AEG, 1995). Fourteen soil samples were analyzed for TPH-G, TPH-D and BTEX. No chemicals were detected in the soil samples analyzed. Note these data are not included on Figure 3 or Table 1.

2.5 REMOVAL OF STORM WATER CLARIFIER

Pursuant to closure authorization issued by the SFSFD on January 7, 1999, the storm water clarifier located west of the office building situated on the West Parcel of the Site was removed. On August 25, 1999, the SFSFD issued a closure certification for the storm water clarifier.

It should be noted that EAI borings S-9 and S-10 were drilled and sampled in February 1999 to assess potential impacts associated with the storm water clarifier (see Figure 3). Soil samples collected from each boring at 10 feet bgs were analyzed for TRPH and VOCs, and no chemicals were detected (see Table 1).

2.6 SOIL REMEDIATION – 2006

In 2006, Biophysics Environmental Assessment, Inc. (BEA) was retained by Mr. Patsouras to excavated impacted soil for two areas on the East Parcel of the Site, i.e., storage shed (EAI Borings E-9 and HA-1) and abandoned clarifier area (EAI Boring B-7). These two areas of the East Parcel were targeted for excavation since prior investigations indicated the presence of hydrocarbons in soil above SSLs (see Table 1).

BEA submitted to the SFSFD a Soil Remediation Work Plan (see BEA, 2006A) and Addendum to Soil Remediation Work Plan (see BEA, 2006B) outlining the soil excavation efforts proposed for the Site. On August 9, 2006 the SFSFD issued a letter approving the Soil Remediation Work Plan as amended.

Between August 16 and 18, 2006, BEA excavated two trenches to approximately 20 feet bgs in areas of the storage shed and abandoned clarifier (see Figure 4). A total of 25 soil samples were collected as part of the excavation efforts, i.e., 12 from the storage shed trench and 13 from the abandoned clarifier area trench. Each soil sample was analyzed for TPH-G, TPH-D, TPH-O and VOCs, including fuel oxygenates, and six soil samples were also analyzed for Title 22 metals (see Table 5).

TPH-G was not detected in any of the 25 soil samples analyzed. TPH-D was detected in four of the 25 soil samples at concentrations ranging between 5.2 mg/kg and 146 mg/kg, and TPH-O in two samples at concentrations of 30J mg/kg (this is an estimated concentration above the method detection limit, but below the laboratory reporting limit) and 180 mg/kg. All of the TPH-D and TPH-O concentrations detected are below their respective SSLs.

Toluene and xylenes were the only VOCs detected in the 25 soil samples analyzed, and both chemicals were detected in only one soil sample, i.e., E9Center@10'. The toluene and xylenes concentrations detected are below their respective SSLs.

Several Title 22 metals were detected in the six soil samples analyzed, i.e., arsenic, barium, chromium, cobalt, copper, lead, molybdenum, nickel, vanadium, and zinc. No metals were detected above environmental screening levels established for residential and commercial/industrial land use, except arsenic. Arsenic was detected in all six samples at concentrations ranging between 3.6 mg/kg and 5.8 mg/kg.

On October 6, 2006 the SFSFD issued a letter providing comments on the BEA Soil Remediation Report of Findings (see BEA, 2006C). This letter indicates that no further action will be required by the SFSFD for the two areas excavated by BEA in August 2006. However, the letter identified other non-UST regulated subsurface units that require closure by the SFSFD, before redevelopment can be considered. The closure of these subsurface units is addressed in Section 2.7.

It should be noted that the BEA Soil Remediation Report of Findings does not include any figures depicting the locations of the various soil samples collected by BEA as part of their investigation. Only one figure depicting the excavation areas is included in the BEA report.

2.7 CLOSURE OF SUBSURFACE UNITS - 2009

In February 2009, the five non-UST regulated subsurface units associated with the SFSFD letter dated October 6, 2006 (see Section 2.6) were addressed by EAI pursuant to permits issued by the City of Santa Fe Springs (see EAI, 2009B). The units were identified as (see Figure 5):

Subsurface	
Unit No.	Identification
1	Abandoned water line
2	Concrete electrical utility box
3	Clarifier
4	Clarifier
5	Clarifier

Media samples were analyzed for TPH-G, TPH-D, VOCs, SVOCs, Title 22 metals, and PCBs. Table 6 summarizes the results of the analytical testing and media sampling locations are depicted on Figure 5. On April 16, 2009 the SFSFD issued a closure letter for the subsurface units (see SFSFD, 2009).

2.8 REMOVAL OF HYDROCARBON IMPACTED SOIL TO A MINIMUM DEPTH OF 13 FEET BGS AND REMOVAL OF SUBSURFACE UNIT 6 - 2010

In February 2010, pursuant to direction from the RWQCB, hydrocarbon impacted soil at the Site was removed to a minimum depth of 13 feet bgs. This depth exceeds the depth of 10 feet bgs that was requested by the RWQCB. This remedial activity removed impacted soil beneath the depth that will be disturbed during grading activities to be conducted for construction of the new warehouse.

During removal of the shallow impacted soil a previously unidentified clarifier was identified. This clarifier was identified as Unit 6 and was removed during remediation efforts requested by the RWQCB (see EAI, 2010). In a letter dated March 18, 2010 the SFSFD issued a closure letter for Unit 6 (see SFSFD, 2010).

2.9 GROUND WATER MONITORING

Ground water has been sampled several times at the Site since 1995. The constituents of concern in soil at the Site, TPH-G, TPH-D, TPH-O, have never been detected in any ground water sample at the Site (see Table 1). Appendix B and Table 7 contain well construction details.

UPDATED SITE CONCEPTUAL MODEL AND REQUEST FOR LOW RISK CLOSURE

11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

During the April 2010 ground water sampling event, PCE was detected in monitoring well MW-3 at a concentration of 130 μ g/L. In EAI's opinion this concentration is not representative of ground water at this location because:

- 1: There was only about one foot of water in this well when it was gauged.
- 2: This well could not be purged prior to sampling.
- 3: The water obtained from this well represents water obtained from the well end cap and may contain condensate from the vadose zone that has collected inside the well casing.

PCE concentrations in wells MW-1D and MW-4 were 16.7 and 11.3 μg/L, respectively. These concentrations are in line with regional ground water concentrations of PCE.

2.10 SOIL GAS SURVEY

On February 23 and 24, 2009, a soil gas survey was conducted to address the presence or absence of VOCs beneath the West Parcel of the Site at depths of 5 and 15 feet bgs. The West Parcel of the Site was divided into 100' by 100' grid segments and soil gas samples collected and analyzed from the approximate center of each grid segment (see Figure 6) (see EAI, 2009C).

Soil gas samples were collected from soil gas probe locations identified as A4 through E5 (see Figure 6). Soil gas samples were analyzed on-site by a mobile laboratory operated by H&P Mobile GeoChemistry (H&P).

The following chemicals were detected in soil gas beneath the Site:

- Propene
- Trichlorofluoromethane (TCFM)
- Acetone
- 1,1-Dichloroethene (1,1-DCE)
- Carbon Disulfide
- 1,1-Dichloroethane (1,1-DCA)
- 2-Butanone (MEK)
- Chloroform
- Benzene
- Carbon Tetrachloride
- Trichloroethene (TCE)
- Toluene
- Tetrachloroethene (PCE)
- Chlorobenzene
- Ethylbenzene
- Xvlenes
- 1,2,4-Trimethylbenzene (1,2,4-TMB)
- 1,3,5-Trimethylbenzene (1,3,5-TMB)

Listed below are the frequency of detection and the maximum concentration of each chemical detected at 5 and 15 feet bgs (see Table 8 and Table 9, respectively).

	Maximum Concentration 5 feet bgs (ug/L)	Detection Frequency 5 feet bgs				oncentration Detection 5 feet bgs Frequency		Maximum Concentration 15 feet bgs (ug/L)	Detec Frequ 15 fee	ency
Propene	0.23	1/1*	100%	0.021	1/1*	100%				
Trichlorofluoromethane	<0.005	0/29	0%	0.011	1/28	3.5%				
Acetone	0.32	1/1*	100%	0.55	1/1*	100%				
1,1-DCE	< 0.005	0/29	(0%	0.0059	1/28	3.5%				
Carbon Disulfide	0.036	1/1*	100%	0.001	1/1*	100%				
1,1-DCA	< 0.005	0/29	0%	0.0058	1/28	3.5%				
MEK	0.23	1/1*	100%	0.0091	1/1*	100%				
Chloroform	< 0.005	0/29	0%	0.15	3/28	11%				
Benzene	0.26	9/29	31%	0.16	10/28	36%				
Carbon Tetrachloride	< 0.005	0/29	0%	0.17	4/28	14%				
TCE	0.016	1/29	3%	3.7	21/28	75%				
Toluene	0.057	1/29	3%	1.0	2/28	7%				
PCE	0.47	16/29	55%	17	28/28	100%				
Chlorobenzene	0.009	1/1*	100%	< 0.005	0/1*	0%				
Ethylbenzene	0.015	1/29	3%	0.65	2/28	7%				
Xylenes	0.077	1/29	3%	3,22	2/28	7%				
1,2,4-TMB	0.017	1/1*	100%	0.0094	1/1*	100%				
1,3,5-TMB	0.0058	1/1*	100%	< 0.005	0/1*	0%				

^{* =} Chemical included only for samples analyzed by EPA Method TO-15.

Propene, acetone, carbon disulfide, MEK, chlorobenzene, 1,2,4-TMB and 1,3,5-TMB are not included in the list of target chemicals associated with EPA Method 8260B and are only associated with the two confirmation soil gas samples collected in Summa Canisters and analyzed by EPA Method TO-15, i.e., samples E3@5' and D6@15' (see Table 9).

3.0 OFF-SITE IMPACTED PROPERTIES

There are two properties adjacent to the Site that are known to be impacted, i.e., Pilot Chemical Company located at 11756 Burke Street and Phibro-Tech, Inc. located at 8851 Dice Road, as well as regional contamination identified for the area by the Water Replenishment District of Southern California (WRD) (see WRD, 2007).

3.1 PILOT CHEMICAL

This property is about 4.3 acres in size, located immediately east of the Site across the railroad tracks, and was used to manufacture detergent for industrial purposes. Pilot Chemical is an active case being overseen by the RWQCB, Mr. Henry Jones is the Case Manager, and the matter is identified as Case No. 0383, Site ID No. 2041500. Chemicals of concern include both petroleum and chlorinated hydrocarbons.

Ground water monitoring for the Pilot Chemical site is completed on a semi-annual basis. Figure 7 depicts the approximate location of the 11 ground water wells associated with the Pilot Chemical site and Table 10 summarizes the most recent VOC ground water quality data available to EAI, i.e., April 2008 (see PEE, 2008). The ground water flow direction is reported as westerly-southwesterly.

3.2 PHIBRO-TECH, INC.

This property is about 4.8 acres in size, located immediately east-southeast of the Site across the railroad tracks, and receives various hazardous aqueous wastes and recyclable materials primarily from the electronic and aerospace industries and treats these substances to create usable new products. Phibro-Tech, Inc. is an active case being overseen by DTSC and Ms. Kathy San Miguel of the DTSC Cypress Office is the Case Manager.

Ground water monitoring was initiated at the Phibro-Tech, Inc. site over 20 years ago and continues as part of ongoing cleanup efforts. Three types of contaminants have generally been detected in ground water beneath the Phibro-Tech, Inc. site: (a) dissolved metals; (b) non-chlorinated VOCs; and (c) chlorinated VOCs (see IRIS, 2008). Elevated concentrations of dissolved metals such as hexavalent chromium have consistently been detected in the vicinity of Pond 1, a Resource Conservation & Recovery Act (RCRA) regulated former surface impoundment area located in the center of the facility.

There are over 20 ground water monitoring wells associated with the Phibro-Tech, Inc. site. Figure 7 depicts the approximate location of these wells and Table 10 summarizes the most recent VOC ground water quality data available to EAI, i.e., July 2008 (see IRIS, 2008). The ground water flow direction for the upper zone wells, i.e., 45 feet bgs, is reported as southwest. Although not reported on Table 10, hexavalent chromium concentrations for the July 2008 sampling event ranged from 0.0012 mg/L to 11 mg/L. Hexavalent chromium concentrations

were as high as 120 mg/L in 1989 and have fluctuated between non-detect and 33 mg/L since October 2001.

3.3 REGIONAL IMPACT

The WRD, in cooperation with the United States Geological Service (USGS), has completed a ground water contamination study to assess the Central Basin threat of multiple contamination plumes in the area (see WRD, 2007). The Central Basin includes the cities of Whittier and Santa Fe Springs.

Several large scale releases such as the Omega Chemical Corporation facility in Whittier, a federal Superfund Site being overseen by EPA with a ground water plume known to extend over three miles, McKesson Chemical Corporation facility in Santa Fe Springs being overseen by DTSC, and Angeles Chemical Company, Inc. in Santa Fe Springs being overseen by DTSC, have resulted in regional ground water impacts to the area, which includes the Site. The chemicals of concern are PCE (primary chemical of concern), TCE and their breakdown products. TCE is a known breakdown product of PCE. Figure 7 presents the regional ground water flow direction and Figure 8 depicts the regional PCE plume for the WRD Central Basin.

4.0 HUMAN HEALTH SCREENING EVALUATION

Figure 9 presents a Site Conceptual Model.

4.1 **SOIL**

Table 1, Table 2, Table 5 and Table 6 summarize the results of testing soil samples collected from the Site to date and include SSLs, SLCCs and CHHSLs for screening purposes. SSLs have been developed by the RWQCB for the protection of ground water, and SLCCs by EPA and CHHSLs by Cal-EPA for the protection of human health.

Residential and commercial CHHSLs are applicable to soils that are at the ground surface or could be brought to the ground surface at some time in the future, with subsequent potential exposure by human receptors. A depth of more than three meters (approximately 10 feet) is generally used to delineate "deep" soils that are likely to remain isolated in the subsurface versus "shallow" soils that may be exposed during future redevelopment activities (see Cal-EPA, 1996).

4.1.1 Hydrocarbons

Historical media sampling at the Site for hydrocarbons (see Table 1) did not identify any locations where chemicals were detected above SLCCs or CHHSLs established for residential or commercial land use. Hydrocarbons above SSLs were identified only for sample locations HA-1@2', boring E-9 between 10 feet and 31 feet, boring B-7 between 10 feet and 25 feet, and sample location SS-4@2'.

BEA completed excavation efforts in 2006 covering boring locations E-9 and B-7 (see Figure 4). These efforts removed impacted soil down to about 20 feet at these two locations and confirmation soil samples did not contain any hydrocarbons above SSLs, SLCCs or CHHSLs (see Table 5).

EAI addressed Subsurface Unit No. 1 through Subsurface Unit No. 5 in February 2009 (see Figure 5). Only the soil sample collected from 15 feet bgs associated with Subsurface Unit No. 3 contained a TPH-D concentration which exceeds the SSL standard of 1,000 mg/kg, i.e., TPH-D at 4,940 mg/kg for Sample 4@15'. However, Sample 4@15' did not contain any detectable concentrations of SVOCs or any VOCs above SSLs standards (see Table 6). Elevated concentrations of hydrocarbons were detected in soil Stockpile D, and therefore, this soil will be shipped off-site for processing.

The following lists areas of the Site where hydrocarbons are present in soil above SSLs, but below SLCCs and CHHSLs established for commercial land use:

11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

Year/Sample Location and Depth	Chemicals of Concern (mg/kg)
1994: HA-1@2'	TPH-O@30,000
1994: E-9@25'	TRPH@15,600
1994; E-9@31'	TRPH@10,900
1994: B-7@25*	TPH-O@12,330 and PCE@0.51
1996; SS-4@2'	TPH-G@743 and TPH-D@3,590
2009: Sample 4@15'	TPH-D@4,940

With the exception of locations HA-1 and SS-4, the other three locations (E-9, B-7 and Sample 4) have impacted soils at depths equal to or greater than 15 feet bgs, and therefore, will not he disturbed as part of the future redevelopment (warehouse) proposed for the Site. Further, these three areas are all outside the footprint of the proposed new warehouse building (see Figure 11) and could be addressed at a later date, if necessary. However, given the fact that heavy end petroleum hydrocarbons are the chemical of concern for these three areas, i.e., only PCE was detected at 0.51 mg/kg for sample location B-7@25' and this was in 1994, over 14 years ago and this PCE concentration has since likely been degraded, and the results of the soil gas survey, EAI proposes to leave the deep soils for locations E-9, B-7 and Sample 4 in-place.

With respect to the shallow impacted soils associated with locations HA-1 and SS-4, EAI proposes to excavate and ship these soils off-site for processing (see Section 6.2).

4.1.2 Title 22 Metals

No Title 22 metals, except arsenic, were detected in soil samples above SLCCs or CHHSLs established for commercial land use. Arsenic was detected at concentrations ranging from 0.870 mg/kg to 55 mg/kg. However, metals (including arsenic) are naturally occurring elements typically found in native California soils. Per Department of Toxic Substances Control (DTSC) guidelines (see DTSC, 1999) metals detected at background concentrations or levels determined by DTSC to be safe maybe eliminated as chemicals of concern. DTSC has established 12 mg/kg as a background arsenic concentration for Los Angeles Unified School District (LAUSD) school sites (see DTSC, 2009).

In order to determine the upper 95 percent confidence level (95% UCL) for arsenic detected in soil at the Site, EAI used ProUCL 4.0, a computer program developed by the EPA (see EPA, 2007). See EAI, 2009C for the results of the evaluation which are also summarized below:

Descriptive Statistics	Value
Total Number of Samples	39
Number of Samples below Detection Limit	20 (or 51.28%)
Maximum Detected Concentration of Arsenic	55 mg/kg
Maximum Detection Limit	5.0 mg/kg
Minimum Detection Limit	0.3 mg/kg
95% UCL by EPA Recommended Kaplan-Meier Method	12.99 mg/kg

11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

The 95% UCL arsenic concentration in soil for the Site of 12.99 mg/kg is very close to (within the range of) the 12 mg/kg background concentration determined acceptable by DTSC for LAUSD school sites, i.e., one of DTSC's most sensitive (restrictive) land uses.

The Site is zoned for heavy industrial/manufacturing land use (M-2) and currently is almost completely paved with asphalt and/or concrete or covered by buildings, i.e., only minimal landscaping that fronts the Site exists along Burke Street (see Figure 7). An approximately 108,000 square foot warehouse is proposed for the West Parcel of the Site (see Figure 11) and the remaining area will be paved with asphalt or concrete for parking. Therefore, once redeveloped, there will be no exposure pathway for contact with Site soils. This coupled with the deed restriction that the City will require for the Site (see Section 5.2.7) along with proper contractor notification and monitoring during Site redevelopment will be sufficient to address the arsenic, and therefore, in EAI's opinion, no other actions for arsenic are required.

4.2 SOIL GAS

A human health screening evaluation was completed to determine if the VOCs detected in soil gas beneath the Site at 5 feet bgs and 15 feet bgs are problematic. This screening evaluation for human health effects involves identifying chemicals of concern, evaluating exposure pathways and media of concern, assessing chemical toxicity, and subsequently, characterizing risks. Estimated health risks are based on a calculated dose (i.e., the amount of chemical intake), which integrates exposure parameters for the receptors of concern (e.g., contact rates, exposure frequency and duration), with chemical-specific toxicity criteria (e.g., reference doses and slope factors) and exposure concentrations for the media of concern. The calculated risks are then compared to health-based guidelines developed by the DTSC. For the purpose of this screening evaluation, the potential risks are calculated based on both a hypothetical residential exposure and commercial land-use scenario. The Site is currently zoned for manufacturing/industrial land use.

Exposure to chemicals can only occur if there is a complete pathway by which chemicals in Site soil, water, or air can be contacted by humans. Therefore, the evaluation of exposure pathways and media of concern is the first step in the human health screening evaluation. The results of the human health screening evaluation for indoor air soil gas intrusion are summarized in the risk characterization section.

4.2.1 Chemicals of Concern

The chemicals detected in soil gas beneath the Site at 5 feet bgs, 15 feet bgs, and their maximum concentrations are listed below:

	Maximum Concentration 5 feet bgs (ug/L)	Maximum Concentration 15 feet bgs (ug/L)
Propene	0.23	0.021
Trichlorofluoromethane	< 0.005	0.011
Acetone	0.32	0.55
1,1-DCE	< 0.005	0.0059
Carbon Disulfide	0.036	0.001
1,1-DCA	< 0.005	0.0058
MEK	0.23	0.0091
Chloroform	< 0.005	0.15
Benzene	0.26	0.16
Carbon Tetrachloride	< 0.005	0.17
TCE	0.016	3.7
Toluene	0.057	1.0
PCE	0.47	17
Chlorobenzene	0.009	< 0.005
Ethylbenzene	0.015	0.65
Xylenes	0.077	3.22
1,2,4-TMB	0.017	0.0094
1,3,5-TMB	0.0058	< 0.005

4.2.2 Exposure Pathways

Exposure to vapors which may intrude into indoor air was evaluated for the VOCs detected in soil vapor. The Site when developed will be covered almost entirely by a building or paved with asphalt/concrete for parking which precludes the potential for direct contact with soil by future building occupants or visitors. Figure 9 is a Site Conceptual Model of the pathway evaluated by this human health screening evaluation, i.e., exposure to vapors intruded into indoor air. No other exposure pathways were considered.

Exposure to human receptors may occur through infiltration of soil gas into the indoor space. The highest concentrations of individual chemicals detected in soil gas beneath the Site were used for evaluating subsurface gas intrusion into the proposed Site building. To evaluate the health risk, the highest detected concentrations for all of the VOCs detected were input in the DTSC version of SG-Screen Model (see DTSC, 2005).

4.2.3 Exposure Concentrations and Chemicals

Section 5.2.1 summarizes the chemicals detected in soil gas beneath the Site at 5 feet bgs and 15 feet bgs. The health risk calculations were based on using:

- Residential land use scenario and commercial land use scenario.
- Maximum chemical concentrations detected in soil gas as exposure point concentrations.

- Average vapor flow rate into the new building proposed for the Site of 5 liters per minute.
- DTSC model default values for soil physical parameters, e.g., percent moisture content and dry density.

4.2.4 Toxicity Values

The toxicity assessment characterizes the relationship between the magnitude of exposure to chemicals of concern, and the nature and magnitude of adverse health effects that may result from such exposure. For purposes of calculating exposure criteria to be used in risk assessments, adverse health effects are classified into two broad categories, non-carcinogens and carcinogens. Toxicity values/exposure criteria are generally developed based on the threshold approach for non-carcinogenic effects and the non-threshold approach for carcinogenic effects. Toxicity values may be based on epidemiological studies, short-term human studies, and subchronic or chronic animal data.

Toxicity values used in this screening evaluation are from DTSC's Screening Model Lookup tables, except for propene and the inhalation slope factor for ethylbenzene, which are from the Office of Environmental Health Hazard Assessment (OEHHA) toxicity database.

4.2.4.1 Carcinogenic Health Effects

Certain chemicals are regulated as carcinogens based on the likelihood that exposure could cause cancer in humans. Numerical estimates of cancer potency for these chemicals are presented as cancer slope or potency factors. The cancer potency factor defines the cancer risk due to constant lifetime exposure to one unit of a carcinogen (units of risk per [ug/m³]¹¹). Cancer potency factors are derived by calculating the 95% UCL on the slope of the linearized portion of the dose-response curve using the multistage cancer model on study data. Use of the 95% UCL of the slope means that there is only a 5 percent chance that the probability of a response could be greater than the estimated value for the experimental data used. This is a conservative approach and may overestimate the actual risk given that the actual risk is expected to be between zero and the calculated value. Carcinogenicity potency factors assume no threshold for effect, i.e., all exposures to a chemical are assumed to be associated with some risk, i.e., there is no threshold below which the risk is negligible or unlikely. If there are thresholds for carcinogenicity, the true risks could be zero at sufficiently low doses. Table 11 presents the cancer potency factors used in this health risk assessment.

4.2.4.2 Non-Carcinogenic Health Effects

A range of exposures is assumed to exist from zero to some finite value (a threshold) that can be tolerated by the organism without appreciable risk of an adverse health effect occurring for the purposes of assessing risks associated with non-carcinogenic effects.

Non-carcinogenic health effects were evaluated using reference concentrations (RfCs) developed by the EPA. The RfC is a health-based criterion based on the assumption that thresholds exist for non-carcinogenic toxic effects (e.g., lung or liver damage). In general, the RfC is an estimate (with uncertainty spanning perhaps an order of magnitude) of a daily exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious health effects during a lifetime of exposure. RfCs are expressed as acceptable daily doses in mg/m³. Table 11 presents the RfCs used in this health risk assessment.

4.2.5 Risk Characterization Summary

Risk characterization integrates the quantitative and qualitative results of data evaluation, exposure, and toxicity assessments. The purpose is to estimate the likelihood, incidence, and nature of potential human health effects to defined receptor populations that may occur as a result of exposure to the chemicals of concern at the Site.

A total of 18 VOCs were identified in soil gas samples collected from the Site (see Section 5.2.1). Table 12 summarizes the chemical specific cancer and non-cancer risks for the Site based on soil gas data from 5 feet bgs, and Table 13 for soil gas data from 15 feet bgs.

4.2.5.1 Carcinogenic Risks

Carcinogenic risks are expressed as the upper-bound, increased likelihood of an individual developing cancer as a result of exposure to a particular chemical. For example, a cancer risk of 1 x 10⁻⁶ (one per million) refers to an upper-bound increased chance of one person developing cancer assuming one million people are exposed. The potential increase in cancer risk from exposure to chemicals detected in soil gas is in addition to a background risk of developing cancer. The background cancer risk is about one in three (0.33) for every American female, and one in two (0.5) for every American male of eventually developing cancer (see ACS, 1997). A cancer risk of one per million or less is typically considered acceptable for a residential land use scenario and 10 per million or less acceptable for a commercial land use scenario.

The results of the cancer risk calculations for the air exposure pathway, using the air concentrations derived from the DTSC SG-Screen Model (see EAI, 2009C), are provided in Table 12 and Table 13. The cancer risks associated with hypothetical residential exposures and commercial exposures are:

Soil Gas Depth	Residential	Commercial
5 feet bgs	3.8E-06 or 3.8 per million	2.3E-06 or 2.3 per million
15 feet bgs	1.6E-05 or 16 per million	9.8E-06 or 9.8 per million

It should be noted that PCE accounts for approximately 81% of the risk associated with soil gas data from 15 feet bgs (see Table 13), and PCE is the only chemical detected in all 28 soil gas samples collected from 15 feet bgs and was detected only in 16 of the 29 soil gas samples collected (55%) from 5 feet bgs (see Section 3.3). The presence of PCE in soil gas appears to be primarily the result of volatilization from the regionally contaminated ground water which is

evidenced by higher concentration and frequency of detection at 15 feet bgs versus lower concentration and frequency of detection at 5 feet bgs, due to an upward diffusion process governed by Fick's law.

Another methodology that can be utilized to calculate risks is use of the 95% UCL for all chemicals detected as exposure point concentrations. However, with the exception of PCE in soil gas at 15 feet bgs, the frequency of detection for all other chemicals detected at 5 feet bgs and 15 feet bgs is insufficient to calculate the 95% UCL (see Section 3.3). However, if you use the upper 95% UCL for PCE detected in soil gas at 15 feet bgs, i.e., 8.123 ug/L (see EAI, 2009C), instead of the maximum concentration of 17 ug/L, along with the maximum concentrations for all other chemicals detected at 15 feet bgs, reduces the residential risk from 16 per million to 9.5 per million and the commercial risk from 9.8 per million to 5.6 per million (see Table 14).

4.2.5.2 Non-Carcinogenic Health Hazards

The potential for noncarcinogenic effects due to exposure to a particular chemical is expressed as the hazard quotient. A hazard quotient is the ratio of the estimated intake or average daily dose of a chemical to the corresponding chemical-specific toxicity value or RfC. The hazard quotients are then compared to an acceptable hazard level. Implicit in the hazard quotient is the assumption of a threshold level of exposure below which no adverse effects are expected to occur. If the hazard quotient exceeds 1.0 (i.e., site specific exposures would exceed the RfC), then the potential for non-carcinogenic adverse effects may exist. Hazard quotients less than 1.0 indicate that no adverse health effects are expected to occur from exposure to chemicals of concern at the Site.

The hazard index associated with hypothetical residential exposures and commercial exposures are (see Table 12, Table 13 and EAI, 2009C):

Soil Gas Depth	Residential	Commercial
5 feet bgs	1.5E-02 or 0.015	1.4E-02 or 0.014
15 feet bgs	1.7E-01 or 0.17	1,0E-01 or 0.1

4.2.6 Uncertainty Analysis

The purpose of a risk assessment is not to predict the actual risk of exposure to an individual. Risk assessments are a management tool for developing conservative estimates of health hazards that are unlikely to underestimate the true risk for potentially exposed populations. The numerical estimates in a risk assessment have associated uncertainties reflecting the limitations in available knowledge about site concentrations, exposure assumptions (e.g., exposure concentrations, intake rates) and chemical toxicity. Where information is incomplete, conservative assumptions (assumptions that err on being overprotective) are made. The greater the uncertainty, the more conservative are the assumptions, in an attempt to be protective of public health. In other words, although calculations of exposure often must be simplified to a few pathways or subgroups within a population, the simplifying assumptions should be more

likely to overestimate than underestimate risk so that public health is protected regardless of the other unknown conditions. Even when actual characteristics of a population are known, assumptions on exposure are often biased toward producing over protective rather than under protective health risk estimates for most of the population.

Risk assessment procedures are thus designed to result in a conservative estimate of risk in order to be protective of the majority of the population and to compensate for uncertainties inherent in estimating exposure and toxicity.

Both the carcinogenic and hazard risks were based upon the maximum detected concentration of the chemicals of concern from a single sample point. If a site-wide average of the detected values for the chemicals of concern were used in determining the carcinogenic and hazard risks, the results of the risk assessment would be considerably lower.

In summary, every aspect of the risk assessment contains multiple sources of uncertainty. Simplifying assumptions are made so that health risks can be estimated quantitatively. Because the exact amount of uncertainty cannot be quantified, the risk assessment is intended to overestimate rather than underestimate probable risk. The results of the assessment therefore, are likely to be protective of health despite the inherent uncertainties in the process.

In a letter dated July 27, 2009, the Office of Environmental Health Hazard Assessment (OEHHA) (see OEHHA, 2009) concurred with the above health risk and hazard assessment to future residents and workers from vapor intrusion and concluded that the data were reliable and within an acceptable range for risk management. In a letter dated October 22, 2009, the RWQCB concurred with the OEHHA assessment of the vapor intrusion risk but determined that a land use restriction was necessary (RWQCB, 2009). The deed restriction has been prepared and is under review by the RWQCB.

4.2.7 Conclusions

A total of 18 VOCs were detected in soil gas samples collected from beneath the Site. A human health screening evaluation was completed using the maximum concentrations of chemicals detected in soil gas at 5 feet bgs and 15 feet bgs as exposure point concentrations. The results of the risk assessment indicate an incremental cancer risk below 10 per million which is typically considered acceptable for commercial development. The hazard quotient is also below the threshold level of 1.0.

Because the incremental cancer risk is above the one per million standard typically considered acceptable for residential development, but below the 10 per million standard typically considered acceptable for commercial/industrial development, the City of Santa Fe Springs has indicated to the property owner that a deed restriction will be required for the Site. The deed restriction will limit development at the Site to industrial, commercial or office space, and preclude residences for human habitation, hospitals, schools for persons under 21 years of age, and day care centers for children or senior citizens.

11630 - 11700 Burke Street, Santa Fe Springs, CA 90670					

5.0 DISCUSSION AND REQUEST FOR LOW RISK CLOSURE

5.1 SOIL ANALYSIS

Soil and soil gas surveys have identified three small areas on the eastern side of the West Parcel with residual hydrocarbon impacted soil (see Figures 10 and 11). At the direction of the RWQCB, shallower impacted soil at the Site was removed in February 2010 (see Section 2.8) down to a minimum depth of 13 feet bgs. Currently residual hydrocarbons extend to a maximum depth of approximately 31 feet (boring E-9@30-31'). This sample was obtained in 1994 and was at a concentration of 10,900 mg/kg TRPH. A soil sample obtained from this same boring was collected at a depth of 15-16 feet bgs and analyzed for carbon chain breakdown (see Figure 12). The carbon chain breakdown data indicate that the release at this Site is heavy oil with some heavy end diesel range hydrocarbons. This analysis is consistent with TPH analytical data for the Site which indicate that the residual hydrocarbons may generally be characterized as TPH-O (see Table 1).

There are only three residual TPH-D sample point locations remaining at the Site that are above SSLs, i.e., Sample 4 at 15' at 4,940 mg/kg, B-7Ad20 at 3,400 mg/kg, and B-7B@13' at 3.040 mg/kg. Furthermore there are only three residual TPH-O sample point locations remaining at the Site above SSLs, i.e., B-7@25' at 12,300 mg/kg, B-7A@20' at 12,300 mg/kg, and B-7B@13' at 12,600 mg/kg. Concentrations at these three sample points are barley above the SSLs for TPH-O of 10,000 mg/kg. Two residual samples, E-9@20-21' and E-9@30-31', analyzed as TRPH contained concentrations of 15,600 and 10,900 mg/kg, respectively.

Gasoline range hydrocarbons have been detected only three times at the Site. The two highest TPH-G concentrations (SS-4@2', 743 mg/kg and Stockpile D, 427 mg/kg) have been removed, leaving only Sample 4@15' at 12.4 mg/kg.

Residual hydrocarbons have been identified at the Site at a maximum depth of 31 feet bgs. Ground water at the Site was last measured at a depth of approximately 68 feet bgs making a total of 37 feet of clean material between the residual hydrocarbons and the water table. In EAI's opinion these residual hydrocarbons in soil do not represent a threat to human health or the environment.

5.2 GROUND WATER ANALYSIS

TPH-G, TPH-D, and TPH-O have never been identified in ground water at the Site. Chlorinated compounds are not generally identified in soil at the Site but are present in ground water at concentrations that are consistent with the regional impact to ground water (see Section 3.0). In EAI's opinion the chlorinated compounds detected in ground water at the Site are not the result of former site activities.

5.3 REQUEST FOR LOW RISK CLOSURE

At the Site, only three small areas remain that contain residual hydrocarbon concentrations above SSLs. These three areas have been excavated and removed down to a minimum depth of 13 feet bgs. It is anticipated that during construction of the new warehouse at the Site, grading activities will only extend to a depth of 5 feet bgs. Thus construction workers will not be exposed to or disturb the residual hydrocarbons.

Very few VOCs have been identified in site soils. Therefore, VOCs are not considered to represent a threat to human health or the environment.

OEHHA has reviewed the soil gas survey and has concluded that the risk and hazard estimates are reliable and can support risk management decisions (see OEHHA, 2009). In a letter dated October 22, 2009, the RWQCB concurred with the OEHHA assessment of the vapor intrusion risk but determined that a land use restriction was necessary (RWQCB, 2009). The deed restriction has been prepared and is under review by the RWQCB.

Elevated concentrations of arsenic were identified in site soils. An approximately 108,000 square foot warehouse is proposed for the West Parcel of the Site and the remaining area will be paved with asphalt or concrete for parking. Since the area will be capped with a building and paved with concrete or asphalt, soil-related pathways are incomplete and OEHHA (see OEHHA, 2009) has indicated that the issue of Chemicals of Potential Concern in soil becomes moot.

The concrete and asphalt cap at the Site, consisting of the building and pavement, will greatly restrict precipitation from entering Site soils and impacting ground water.

Hydrocarbon impacted soil was initially identified to a depth of 31 feet bgs in boring E-9@30-31' in 1994. Borings B-7A, E-9A, and Sample 4A were drilled in the same area in 2009 to a total depth of 70 feet bgs and only identified hydrocarbon impacted soil to a maximum depth of 20 feet bgs. These data indicate that during the 15 year intervening year period, hydrocarbons have not migrated downward.

For the above reasons, it is EAI's opinion that the deed restriction and capping of the Site will adequately protect human health and the environment.

Therefore on behalf of Larry Patsouras, EAI requests that the Site be granted a low risk closure.

6.0 LIMITATION

Our professional services have been performed using that degree of knowledge, diligence, care and skill ordinarily exercised, under similar circumstances, by reputable environmental consultants practicing in this or similar localities at this time. EAI assumes that information provided by third parties is true, accurate and reliable. This report has been prepared for Mr. Larry Patsouras. Use of this report by any other party shall be at such party's sole risk. The findings and conclusions contained in this report are based on information contained and/or referenced herein, and our best judgment. No other warranty, expressed or implied, is made as to the professional advice contained in this report.

Respectfully submitted,

ENVIRONMENTAL AUDIT, INC.

Brent H Mechan

Brent H. Mecham, RG, REA II

Project Manager

Boris Stolin, PE

Manager Environmental Engineering

Steven A. Bright, REP, REA I

President

SAB:BS:BHM:pje

SAB:1576-USCM&LowRiskClosure

7.0 REFERENCES

- Advanced GeoEnvironmental, Inc., "Soil Sampling Following Removal of Underground Storage Tanks, Talco Plastic, Inc., 11650 Burke Street, Santa Fe Springs, California," dated April 1, 1998 (AGI, 1998).
- AIG Consultants, Inc., "Phase I Environmental Site Assessment, Industrial Buildings 11630-11700 Burke Street, Santa Fe Springs, California 90670," dated June 30, 1994 (AIG, 1994).
- American Cancer Society, "Cancer Facts and Figures 1997," dated 1997. The New York Cancer Society (ACS, 1997).
- Amnat Environmental & Geotechnical, "Leak Detection Program (LDP) Report, Talco Plastics, 11650 Burke Street, Whittier, California," dated September 1995 (AEG, 1995).
- Biophysics Environmental Assessments, Inc., "Soil Remediation Work Plan, El Greco, Inc., 11630-11700 Burke Street, Santa Fe Springs, California," dated June 29, 2006 (BEA, 2006A).
- Biophysics Environmental Assessments, Inc., "Addendum to Soil Remediation Work Plan, El Greco, Inc., 11630-11700 Burke Street, Santa Fe Springs, California," dated July 26, 2006 (BEA, 2006B).
- Biophysics Environmental Assessments, Inc., "Soil Remediation Report of Findings for El Greco, Inc., 11630-11700 Burke Street, Santa Fe Springs, California," dated September 14, 2006 (BEA, 2006C).
- California Environmental Protection Agency, "Supplemental Guidance for Human Health Multimedia Risk Assessments of Hazardous Waste Sites and Permitted Facilities," dated August 1996 (Cal-EPA, 1996).
- California Environmental Protection Agency, "Use of California Human Health Screening Levels (CHHSLs) in Evaluation of Contaminated Properties," dated January 2005 (Cal-EPA, 2005).
- California Regional Water Quality Control Board, Los Angeles Region, "Guidance for VOC-Impacted Sites: Soil Screening Levels," dated March 1996 (RWQCB, 1996A).
- California Regional Water Quality Control Board, Los Angeles Region, "Guidance for Petroleum-Impacted Sites: Soil Screening Levels," dated May 1996 (RWQCB, 1996B).

- California Regional Water Quality Control Board, Los Angeles Region/Department of Toxic Substances Control, "Advisory-Active Soil Gas Investigations," dated January 28, 2003 (RWQCB, 2003).
- California Regional Water Quality Control Board, Los Angeles Region, Letter titled "Requirement to provide Technical Report Pursuant to the California Water Code Section 13267, The Property Located at 11630 11700 Burke Street, Santa Fe Springs," dated October 22, 2009 (RWQCB, 2009).
- City of Santa Fe Springs, "Soil Assessment and Remediation Guidelines for Commercial/ Industrial Sites," (City Soil Guidance).
- Department of Toxic Substances Control, "Preliminary Endangerment Assessment Guidance Manual," dated January 1994, second printing June 1999 (DTSC, 1999).
- Department of Toxic Substances Control, "Interim Final, Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air," dated December 15, 2004, Revised February 7, 2005 (DTSC, 2005A).
- Department of Toxic Substances Control, "Arsenic Strategies, Determination of Arsenic Remediation, Development of Arsenic Cleanup Goals," dated January 16, 2009 (DTSC, 2009).
- Environmental Audit, Inc., "Preliminary Draft, Remedial Investigation, 11630-11700 Burke Street, Santa Fe Springs, California," dated December 22, 1994 (EAI, 1994).
- Environmental Audit, Inc., "Subsurface Investigation Report, 11630-11700 Burke Street, Santa Fe Springs, CA 90670," dated December 18, 1995 (EAI, 1995).
- Environmental Audit, Inc., "Supplemental Subsurface Investigation, 11630-11700 Burke Street, Santa Fe Springs, CA 90670," dated March 13, 1997 (EAI, 1997).
- Environmental Audit, Inc., "Report on Soil Sampling and Testing, 11630-11700 Burke Street, Santa Fe Springs, California," dated March 1, 1999 (EAI, 1999).
- Environmental Audit, Inc., "Remedial Investigation Work Plan, 11630-11700 Burke Street, Santa Fe Springs, CA 90670," dated November 3, 2008 (EAI, 2008).
- Environmental Audit, Inc., "Remedial Investigation Work Plan Addendum, 11630-11700 Burke Street, Santa Fe Springs, CA 90670," dated January 16, 2009 (EAI, 2009A).
- Environmental Audit, Inc., "Report on Closure of Subsurface Units, 11630-11700 Burke Street, Santa Fe Springs, CA 90670," dated March 2009 (EAI, 2009B).

- Environmental Audit, Inc., "Summary of Site Assessments, Soil Gas Survey, Human Health Screening Evaluation, and Work Plan, 11630-11700 Burke Street, Santa Fe Springs, CA 90670," dated March 2009 (EAI, 2009C)
- Environmental Audit, Inc., "Removal of Clarifier Unit 6, 11630-11700 Burke Street, Santa Fe Springs, CA 90670," dated March 9, 2010 (EAI, 2010).
- IRIS Environmental, "July 2008 Quarterly Sampling Report, Phibro-Tech, Inc., Santa Fe Springs, California," dated October 27, 2008 (IRIS, 2008).
- Office of Environmental Health Hazard Assessment, Letter titled "Review Memorandum for Summary of Site Assessments, Soil Gas Survey, Human Health Screening Evaluation, and Work Plan," dated July 27, 2009 (OEHHA, 2009).
- Pacific Edge Engineering, Inc., "Semi-Annual Groundwater Monitoring & Soil Remediation Progress Report, April 2008 (SLIC No. 383), Pilot Chemical Company, 11756 Burke Street, Santa Fe Springs, California," dated June 2008 (PEE, 2008).
- Professional Service Industries, Inc., "Phase II Preliminary Contamination Assessment, 11630-11700 Burke Street, Santa Fe Springs, California," dated August 18, 1994 (PSII, 1994).
- Santa Fe Springs Fire Department, Letter titled "Closure of Subsurface Units Not Regulated as Underground Storage Tanks, 11630-11700 Burke Street, Santa Fe Springs, 90720," dated April 16, 2009 (SFSFD, 2009).
- Santa Fe Springs Fire Department, Letter titled "Closure of Clarifier Unit 6, 11630-11700 Burke Street, Santa Fe Springs, 90720," dated March 18, 2010 (SFSFD, 2010).
- United States Environmental Protection Agency, "ProUCL Version 4.0 Technical Guide, EPA/600/R-07/041," dated April 2007 (EPA, 2007).
- United States Environmental Protection Agency, Region IX, "Regional Screening Levels for Chemical Contaminants at Superfund Sites," dated May 20, 2008 (EPA, 2008).
- Water Replenishment District of Southern California, "Central Basin Groundwater Contamination Study," dated December 11, 2007 (WRD, 2007).

TABLES

TABLE 1
HISTORICAL (1994 - 2010) SOIL TESTING RESULTS - HYDROCARBONS
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670
(concentrations in milligrams per kilogram - mg/kg)

Original in Color

	T			(8015M)	1	(418,1)									(802	20/8240/8260)B)								
			1	(60 (3.91)		(416.1)	· · · · · · · · · · · · · · · · · · ·		Ethyl	Isopropyl-			Methylene		(00,		sec-Butyl	n-Propyl		p-Isopropyl	sec-Butyl				$\overline{}$
Firm	Samples ID	Date	TPH-G	TPH-D	трн-о	TRPH	Toluene	Xylenes	benzene	benzene	PCE	TCE	Chloride	Acetone	TCFM	benzene	benzene	1	Naphthalene	tolucne	benzene	MEK	1,2,3-TCP	1.2,4-TMB 1,	,3,5-TMB
	CEL - UNDERC				+ 1																				
EAI	E-1@4-6'	11/29/94	<10	<10	NA	<5	< 0.005	<0.01	< 0.005	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	E-1@9-11'	11/29/94	<10	<10	NA	22	<0.005	<0.01	< 0.005	ŇΑ	NA	NA	NA	NA	NA	NA	NA	NA	ΝA	NA	ÑΑ	NA		NA	NA
	E-1@14-16'	11/29/94	<10	<10	NA:	32	<0.005	0.0481	< 0.005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA
	E-1@19-21'	11/29/94	<10	<10	NA	9	<0.005	<0.01	<0.005	NA	NA	ΝA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA		NA	NA
	E-1@24-26'	11/29/94	<10	<10	NA	15	< 0.005	<0.01	<0.005	ÑΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ŇA	NA		NA.	NA
	E-2@4-6'	11/29/94	<10	<10	NA	NA.	<0.005	<0.01	<0.005	NA	NA	NA	NA	NA	NA	NA	NA	ΝA	NA	NA	NA	NA.		ŇΑ	NA
	E-2@9-11'	11/29/94	<10	<10	ŇΑ	NA	<0.005	< 0.01	<0.005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA		NA.	NA.
	E-2@14-16'	11/29/94	<10	<10	NA	NA	<0.005	<0.01	<0.005	NA	NA	NA	NA	NA	NA	NA	NA.	NA NA	NA.	NA	NA	NA.		NA NA	NA
	E-2@19-21'	11/29/94	<10	<10	NA	NA	< 0.005	<0.01	< 0.005	NA	NA.	NA	NA.	NA	NA	NA.	NA	NA NA	NA NA	NA.	ΝA	NA NA	-	NA NA	NA
	E-2@24-26'	11/29/94	<10	<10	NA	NA	<0.005	<0.01	<0.005	NA NA	NA]	NA.	NA	NA NA	NA	NA	NA NA	NA NA	NA NA		NA NA	NA NA		NA NA	NA NA
	E-3@4-6'	11/29/94	<10	<10	NA	NA	<0.005	<0.01	<0.005	NA	NA NA	NA.	NA	NA NA	NA NA	NA	NA NA	NA:		NA NA	NA NA	NA NA	+	NA NA	NA NA
	E-3@9-11'	11/29/94	<10	<10	NA NA	NA NA	<0.005	<0.01	<0.005	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA			NA NA	NA NA		NA NA	NA NA
	E-3@14-16'	11/29/94	<10	<10	NA NA	NA	<0.005	<0.01	<0.005	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA			NA NA	NA NA		NA NA	NA NA
	E-3@19-21'	11/29/94	<10	<10 <10	NA NA	NA NA	<0.005 <0.005	<0.01	<0.005	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA			ŇA	NA		NA	NA
	E-3@24-26' E-4@4-6'	11/29/94 11/29/94	<10 <10	<10	NA NA	NA NA	<0.005	<0.01	<0.005		NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA				NA NA		NA	NA
	E-4@9-11'	I1/29/94	<10	<10	NA.	NA NA	<0.005	<0.01	<0.005	NA.	NA	NA.	NA	NA NA	NA	NA	NA	NA				NA	-	NA	NA
	E-4@14-16'	11/29/94	<10	<10		NA NA	< 0.005	<0.01	<0.005	NA NA	NA	NA.	NA	NA	NA	NA	NA	NA			$\overline{}$	NA		NA	NA
	E-4@19-21'	11/29/94	<10	<10		NA NA	<0.005	<0.01	<0.005	NA	NA	NA	NA	NA	NA	NA.	NA	NA			\vdash	NA		NA	NA
	E-4@24-26'	11/29/94	<10	<10		NA NA	< 0.005	<0.01	< 0.005	NA	NA	NA	NA	NA	NA	NA	NA	NA				NA	NA	NA	NA
	12.46324.20	11/2///	110	***	.,,,,	2122	0.000	.0101		,			2.11												
AGI	B1A@14.51	03/24/98	<0.5	NA	NA	NA	< 0.005	< 0.005	<0.005	NA	NA	NA	NA	NA	NA	NA	NA:	NA.	NA.	NA	NA	NA	. NA	NΑ	'nΑ
	B1B@14.5'	03/24/98	<0.5	NA	NA		<0.005	<0.005	< 0.005		NA	NA	NA	NA	NA	NA	NA	ΝA	NA	NA	NA	NA	NA	NA	NA
Ts oval	B2A@14.51	03/24/98	<0.5	<10	NA	<10		< 0.005	<0.005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N.A	NA NA	NA	NA
USTs Removal Samples	B2B@14,5'	03/24/98	<0.5	<10	NA	<10	<0.005	<0.005	<0.005	ÑΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA
~ ×	B2C@14.51	03/24/98	<0.5	<10	NA	<10	<0.005	<0.005	< 0.005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA.	NA NA	NA
WEST PA	RCEL - CLARIF	IERS (Histo	rical Paint /	Steam Clear	ning Areas)										,										
PSII	HA-2@:10'	08/04/94	ব		<3		<0.0013	<0.0013	<0.0013		<0.0013	<0.0013	0.0056J	<0.0026		< 0.0013	< 0.0013	< 0.0013	<0.0013			<0.0026		<0.0013	<0.0013
	HA-3@4.5'	08/04/94	<3	<3	<3	NA	<0.0013	< 0.0013	< 0.0013	<0.0013	<0.0013	< 0.0013	0.0031	< 0.0026	<0.0013	< 0.0013	< 0.0013	< 0.0013	<0.0013	<0.0013	<0.0013	<0.0026	<0.0013	<0.0013	< 0.0013
											2 22 21			-0.000	.0.01	274	27.4	374	NT 4	F NTA		<u>در ۱</u> ۲۵		STAI	214
EAI	E-5@4-6'	11/29/94	NA					< 0.01	<0.005		<0.005	<0.005	<0.005	<0.005		NA	NA NA			_				NA NA	NA NA
i	E-5@9-11'	11/29/94	NA	NA.	NA		<0.005	<0.01	<0.005		<0.005	<0.005	<0.005	<0.005 <0.005	<0.01	NA NA	ÑA NA	NA NA					7 11 11	NA.	NA NA
	E-5@14-16'	11/29/94	NA NA	NA	ÑΑ		<0.005	<0.01	<0.005	<0.005 <0.005	<0.005	<0.005	<0.005 <0.005	<0.005	<0.01	NA NA	NA NA	NA NA				-		NA NA	NA NA
1	E-5@19-21'	11/29/94	NA NA	NA NA	NA NA			<0.01 <0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	NA NA	NA NA	NA NA						NA	NA NA
1	E-6@4-6' E-6@9-11'	11/29/94	NA NA	NA NA	NA NA		<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	NA NA	NA.	NÁ	+					NA	NA
1	E-6@14-16'	11/29/94	NA.	NA NA	NA NA			<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.01	NA.	NA.	NA.						NA	N.A
	E-6@19-21'	11/29/94	NA.	NA NA	NA NA			<0.01	<0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.01	NA	NA	NA			NA	< 0.025		NA	N.A
	E-6@24-26'	11/29/94	NA.	NA.	NA.		-	<0.01	< 0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.01	NA	NA	NA			NA.	< 0.025	5 NA	NA	NA
	12 0(4)21-20	11122777	,112	×	1121		0.002	.0.03		1										•				-	
EAI	S-3@10'	02/10/99	ΝA	ŇĀ	NA	<10	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.05	NA	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	N/	<0.01	< 0.01	<0.01
	S-4@10'	02/10/99	NA					<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	NA	_	< 0.01	<0.01	<0.01	< 0.01	<0,01		N.A	< 0.01	<0.01	<0.0
	S-5@10'	02/10/99	NA					<0.01	<0.01	<0.01	<0.01	<0.01		NA		<0.01	<0.01	<0.01	<0.01	<0.01		N.A		<0,01	<0.0
	S-6@:10'	02/10/99	NA					< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.05	NA		<0.01	< 0.01	<0.01	<0.01	<0.01			_	< 0.01	<0.0
	S-7@10'	02/10/99	NA	NA	NA	<10	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.05	NA	<0.01	<0.01	<0.01	<0.01						< 0.01	<0.0>
	S-8@10'	02/10/99	NΑ	NA	NA	<10	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	NA.		<0.01								<0.01	<0.0
	Pit@6'	02/10/99	NA	NA	NA	<10	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.05	N.A	< 0.01	<0.01	<0.01	<0.01	<0.0]	<0.01	<0.01	N/	<0.01	<0.01	<0.0>
WEST PA	RCEL - MECHA	NICAL PIT	ľ																	ļ		L		111	
EAI	E-16@5'	12/01/94	NA	NA				<0.01	< 0.005		<0.005	<0.005		< 0.005											N.A
	E-16@10'	12/01/94	NA	NA	NA	9	<0.005	<0.01	< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.01	NA	NA	NA	NA NA	ŇĀ	NA.	<0.02	S NA	NA	N.A
	RCEL - MAINTI						,					-0.000		-8.84	1 40 0000	-0.0015	-0.0012	-0.0015	-0.0010	40.0013	40.0012	ZO 000	(×0.0012	ZO 0011
PSII	B-5@4'	08/03/94	<3	<3	11.7	NA	< 0.0013	< 0.0013	< 0.0013	<0.0013	<0.0013	<0.0013	0.0064	< 0.0026	<0.0013	< 0.0013	< 0.0013	< 0.0013	<0.0013	<0.0013	<0.0013	<0.0020	6 <0.0013	<0.0013	<0.0013

1 of 7

XL:1576;SOILDATA-HISTHYDROCARBONS-2 Revised PE

TABLE 1
HISTORICAL (1994 - 2010) SOIL TESTING RESULTS - HYDROCARBONS
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670
(concentrations in milligrams per kilogram - mg/kg)

Original in Color

		1		(8015M)		(418.1)									(802	0/8240/826	0B)								
									Ethyl	Isopropyl-	1		Methylene			n-Butyl	sec-Butyl	n-Propyl		p-lsopropyl	sec-Butyl	1			
Firm	Samples ID	Date	TPH-G	TPH-D	TPH-O	TRPH	Toluene	Xylenes	benzene	benzene	PCE	TCE	Chloride	Acetone	TCFM	benzene	benzene	benzene	Naphthalene	toluene	benzene	MEK	1,2,3-TCP	1,2,4-TMB	1,3,5-TMB
EAI	E-17@51	12/01/94	NA	NA	NA	9	<0.005	< 0.01	< 0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.01	NA	NA	NA	NA	NA	NA.	< 0.025	NA	ŇA	NA
	E-17(a)10'	12/01/94	NA	NA	NA	13	< 0.005	< 0.01	<0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	<0.01	.NA	NA	NA	NA	NA	NA	< 0.025	NA	NA	NA
	E-17@15'	12/01/94	NA	NA	NA	6	< 0.005	<0.01	<0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	<0.01	NA	NA	NA	NA	NA	NA	< 0.025	NA	NA	NA
	E-17@201	12/01/94	<10			98		<0.01	< 0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005		NA	NA	NA	NA	NA	NA		NA	NA	NA
										·															
EAl	S-1@10 ¹	02/10/99	NA	NA	NA	<10	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.05	NA	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	ÑΑ	<0.01	< 0.01	<0.01
	S-2@10'	02/10/99	NA	NA	NA	<10	< 0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	<0.05	NA		< 0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	ΝA	< 0.01	<0.01	<0.01
WEST PA	RCEL - EOUIPI	MENT STOP	RAGE (Stai	ned Area)						J								0,02	01021	51011	0.02			-0.01	-5101
PSII	HA-4@21	08/04/94	<3		<3	NA	< 0.0013	< 0.0013	< 0.0013	<0.0013	< 0.0013	< 0.0013	0.0021J	< 0.0026	<0.0013	< 0.0013	< 0.0013	< 0.0013	<0.0013	<0.0013	<0,0013	<0.0026	<0.0013	< 0.0013	< 0.0013
WEST PA	RCEL - REMOV	ED STORM	A WATER	CLARIFIER	į										1						*******			- January	0107,15
EAI	S-9@10'	02/10/99	NA	,		<10	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	NA	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	NA	<0.01	<0.01	< 0.01
	S-10@10'	02/10/99	NA			<10	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.05	NA		< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	·	1	<0.01	<0.01
WEST PA	RCEL - WELLS					-10	10101	-0.01	-7177	-0.01	-0.02	-0.01	-0.05	1.71	40,01	-0.01	-0,01	-0.01	-0.01	40.01	-0.01	1423	10.01	·0.01	- 10,01
EAI	MW-3d10	06/30/09	<0.1	<10	ΝA	NA	<0.005	< 0.01	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.020	<0.005	< 0.005	<0.005
	MW-3d20	06/30/09	<0.1	<10		NA.	<0.005	<0.01	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.020	<0.005	<0.005	<0.005
	MW-3d30	06/30/09	<0.1	<10		ŅA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.020	<0.005	< 0.005	<0.005
	MW-3d40	06/30/09	<0.1	<10		NA	<0.005	<0.01	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005
	MW-3d50	06/30/09	<0.1	<10		NA	<0.005	<0.01	< 0.005	<0.005	< 0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005
	MW-3d60	06/30/09	<0.1			NA.	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005
	MW-4d10	06/30/09	<0.1	<10		NA NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005
	MW-4d20	06/30/09	<0.1	<10		NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005
	MW-4d30	06/30/09	<0.1			NA NA	<0.005	<0.01	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	< 0.005
	MW-4d40	06/30/09	<0.1	<10		NA NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005		< 0.005
	MW-4d55	06/30/09	<0.1			NA NA	<0.005	<0.01	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.003	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020		<0.005	
	MW-4d65	06/30/09	<0.1	<10	NA NA	NA NA	< 0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020		<0.005	<0.005
WESTD	RCEL - SITE AS					IVA	-0.003	\v.\v1]	C00,0/	<u>\0.003</u>	\0.003	\0.0 03	~0,003	~0.020	1 <0.003	<u> </u>	<0.003	~0.003	<0.003]	<u> </u>		<0.020	<0.005	<0.005	<0.005
EAI	D-4d5	12/07/09	NA NA			NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.006	<0.005	<0.005	~0.00E	-0.02Á	<0.005	<0.006	<0.00E
EVI	D-4d10	12/07/09	NA NA			NA NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.003	<0.005	<0.020	<0.003	<0.003	<0.005	<0.005 <0.005	<0.005	<0.005	<0.005 <0.005			<0.005	<0.005
	D-4d15	12/07/09	NA NA	-			<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020								<0.020		<0.005	<0.005
i	D-4d20	12/07/09	NA NA			NA NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005			<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020		<0.005	<0.005
	D-4d25	12/07/09	NA NA				<0.005						<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005
	D-4d30	12/07/09	NA NA			NA NA		<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005			<0.005	<0.005
	D-4d35	12/07/09	NA NA			NA NA	<0.005 <0.005	<0.01	<0.005	<0.005	<0.005	<0.005 <0.005	<0.005	<0.020	<0.005 <0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005
1	D-4d40	12/07/09	NA NA			NA NA	<0.005	<0.01		<0.005	<0.005		<0.005	<0.020		<0,005	<0.005	<0.005	<0.005	<0.005	<0.005			<0.005	<0.005
	D-4d45	12/07/09	NA NA					< 0.01	<0.005 <0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005
	D-4d50			1		NA NA	<0.005	<0.01		<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	< 0.005
	D-4d55	12/07/09	NA NA	4		NA NA	<0.005	<0.01	<0.005		<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	< 0.005
	D-4d53	12/07/09				NA NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020 <0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005
		12/07/09	NA NA			NA.		<0.01	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020		<0.005	<0.005
	D-4d65 D-4d70	12/07/09	NA NA	 		NA NA	<0.005	<0.01 <0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005
	D-4070	12/07/09	NA.	A.Y.	INA.	NA:	<0.005	<0.01]	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.020	<0.005	<0.005	<0.005
EAI	B-2d5	12/08/09	1 177	NTA	314	3.7.4	=0.00sl	40.01	-0.005	-0.005	=0.00E	-0.00c	-0.006	-0 D2A	1 -0.005	-0.006	-0.000	-0.006	-0.005	-0.005	I -0.00¢	1 -0.000	1 .0 005	-2.005	-0.004
EAL			NA NA					<0.01	<0.005		<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005				<0.005	<0.005
	B-2d10	12/08/09	NA NA		-			<0.01	<0.005		<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			*		<0.005
	B-2d15	12/08/09	NA NA	+				<0.01	<0.005		<0.005	<0.005	<0.005	<0.020		<0.005	< 0.005		<0.005	<0.005					< 0.005
	B-2d20	12/08/09	NA NA		-	-		<0.01	<0.005		<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	< 0.005		<0.005	<0.005		 	÷		<0.005
	B-2d25	12/08/09	NA NA		-			<0.01	<0.005		<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005					<0.005
	B-2d30	12/08/09	NA NA					<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005					< 0.00:
	B-2d35	12/08/09	NA NA					<0.01	<0.005		<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005		-		<0.005	< 0.005
	B-2d40	12/08/09	NA NA				+	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005				<0.005	<0.005
	B-2d45	12/08/09	NA NA			NA		<0.01	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005				<0.005	<0.00
	B-2d50	12/08/09	NA NA			NA	\longrightarrow	<0.01	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	$\overline{}$	<0,005		<0.020		<0.005	<0.003
	B-2d55	12/08/09	NA NA			NA	\longrightarrow	< 0.01	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		1		<0.005	<0.005
	B-2d60	12/08/09	NA			NA		<0.01	< 0.005		<0.005	< 0.005	< 0.005	<0.020		<0.005	< 0.005	<0.005	< 0.005	< 0.005				< 0.005	< 0.005
	B-2d65	12/08/09	N.A					< 0.01	< 0.005	<0.005	<0.005	<0.005	< 0.005	< 0.020		< 0.005	<0.005	<0.005	<0,005	< 0.005	-			< 0.005	<0,005
	B-2d70	12/08/09	NA	. NA	ŅA	NA	<0.005	<0.01	<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.020	<0.005	<0,005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	< 0.005	<0.005

XU:1576:SOILDATA-HISTHYDROCARBONS-2 Revised PE 2 of 7

TABLE 1 HISTORICAL (1994 - 2010) SOIL TESTING RESULTS - HYDROCARBONS 11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

(concentrations in milligrams per kilogram - mg/kg)

Original in Color

·				(8015M)		(418.1)									(80	20/8240/826	0B)								
		1		T T					Éthyl	Isopropyl-	T		Methylene			n-Butyl	sec-Butyl	n-Propyl		p-Isopropyl	sec-Butyl				
Firm	Samples ID	Date	TPH-G	TPH-D	ТРН-О	TRPH	Toluene	Xylenes	benzene	benzene	PCE	TCE_	Chloride	Acetone	TCFM	benzene	benzene	benzene	Naphthalene	toluene	benzene	MEK	1,2,3-TCP 1.	2,4-TMB	1,3,5-TMB
EAI	B-3d5	12/08/09	NA	NA	NA	NA	<0.005	< 0.01	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.020	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.020	< 0.005	<0,005	< 0.005
	B-3d10	12/08/09	NΑ	NA	NA	NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	< 0.005
	B-3d15	12/08/09	NA	NA	NA	NA	<0.005	<0.01	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.020	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0,005	<0.020	<0.005	<0.005	< 0.005
	B-3d20	12/08/09	NA	NA	NA	NA	<0.005	< 0.01	<0.005	< 0.005	< 0.005	< 0.005		< 0.020	<0.005	<0.005	<0,005	<0,005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	< 0.005
	B-3d25	12/08/09	NA	NA	NA	NA	<0.005	<0.01	<0.005	<0.005	< 0.005	<0.005		< 0.020	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005
İ	B-3d30	12/08/09	NA	NA	NA	NA	<0.005	<0.01	<0.005	<0.005	<0.005	< 0.005	-	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005
	B-3d35	12/08/09	NA	NA	NA	NA	<0.005	<0.01	<0.005	<0.005	<0.005	< 0.005		< 0.020	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	<0.020	<0.005	< 0.005	<0.005
	B-3d40	12/08/09	NA	NA	NA	NA	<0.005	<0.01	<0.005	< 0.005	<0.005	<0.005	-	<0.020	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.020	< 0.005	<0.005	<0.005
	B-3d45	12/08/09	NA.	NA	NA	NA	<0.005	<0.01	<0.005	<0.005	<0.005	< 0.005		< 0.020	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.020	<0.005	<0.005	<0.005
	B-3d50	12/08/09	NA	NA	NA	NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005		< 0.020	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0,005	<0.020	<0.005	<0.005	< 0.005
	B-3d55	12/08/09	NA	NA	NA	NA	<0.005	<0,01	<0.005	<0,005	<0.005	<0.005	_	< 0.020	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005
	B-3d60	12/08/09	NA	NA	NA	NA	<0.005	<0.01	<0.005	< 0.005	<0.005	<0.005		<0.020	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005
	B-3d65	12/08/09	NA.	NA	NA	NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005		<0.020	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005
	B-3d70	12/08/09	NA	NA	NA	NA	<0.005	<0.01	<0.005	<0,005	<0.005	<0.005	<0.005	<0.020	<0,005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005[<0.020	<0.005	<0.005	<0.005
EAI	C-3d5	12/08/09	NA	NA	NA	NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0,005	< 0.005	< 0.005	<0.005	<0.020	< 0.005	<0.005	<0.005
	C-3d10	12/08/09	NA	NA	NA	NA	<0.005	<0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.020	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.020	< 0.005	< 0.005	< 0.005
	C-3d15	12/08/09	NA	NA	NA	NA	< 0.005	<0.01	< 0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.020	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.020	< 0.005	< 0.005	<0.005
	C-3d20	12/08/09	NA	NA	NA	NA	<0.005	<0.01	<0.005	< 0.005	<0.005	<0.005	<0.005	< 0.020	<0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.020	< 0.005	<0.005	<0.005
	C-3d25	12/08/09	ŇΑ	NA.	ÑΑ	NA	<0.005	<0.03	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.020	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.020	< 0.005	<0.005	< 0.005
	C-3d30	12/08/09	NA	NA	NA	NA	< 0.005	<0.01	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.020	<0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.020	< 0.005	<0.005	< 0.005
	C-3d35	12/08/09	NA	NA	NA	NA	<0.005	<0.01	<0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.020	<0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.020	< 0.005	<0.005	< 0.005
	C-3d40	12/08/09	NA	NA	NA	NA	<0.005	< 0.01	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.020	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.020	< 0.005	<0.005	< 0.005
	C-3d45	12/08/09	NA	NA	NA	NA	<0.005	< 0.01	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.020	< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.020	< 0.005	< 0.005	< 0.005
	C-3d50	12/08/09	NA	NA	NA	NA	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.020	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.020	< 0.005	<0.005	<0.005
	C-3d55	12/08/09	N.A.	NA	NA	NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.020	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	< 0.005	<0.005	< 0.005
	C-3d60	12/08/09	NA	NA	NA	NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.020	<0.005	<0.005	<0,005	<0.005	< 0.005	< 0.005	<0.005	<0.020	< 0.005	< 0.005	< 0.005
	C-3d65	12/08/09	NA	NA	NA	NΑ	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.020	<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.020	< 0.005	<0.005	<0.005
	C-3d70	12/08/09	NA	NA.	NA	NA	<0.005	<0.01	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.020	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.020	< 0.005	<0.005	< 0.005
	N	MUMIXAN	ND	ND	11.7	98	ND	0.0481	ND	ND	ND	ND	0.0064	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0033	ND	ND

3 of 7 XL:1576:SOILDATA-HISTHYDROCARBONS-2 Revised PE

TABLE 1
HISTORICAL (1994 - 2010) SOIL TESTING RESULTS - HYDROCARBONS
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670
(concentrations in milligrams per kilogram - mg/kg)

Original in Color

	T			(8015M)		(418.1)									(80)	20/8240/8260	0B)								
									Ethyl	Isopropyi-	<u> </u>		Methylene			n-Butyl	sec-Butyl	n-Propyl		p-Isopropyl	sec-Butyl				
Firm	Samples ID	Date	TPH-G	TPH-D	ТРН-О	TRPH	Toluene	Xylenes	benzene	benzene	PCE	TCE	Chloride	Acetone	TCFM	benzene	benzene	benzene	Naphthalene	toluene	benzene	MEK	1,2,3-TCP 1	,2,4-TMB 1	,3,5-TMI
	RCEL - STORAC																								
PSU	[HA-1@2'	08/03/94	<3,000	<3,000	30,000	NA]	<0.0013	<0.0013	<0.0013	<0.0013	0.00113	<0.0013	<0.0013	0.1	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	0.0075	<0.0013	<0.0013	< 0.0013
EAI	E-8@5-6'	11/30/94	NA	ŅA	NA	<5	<0.005	< 0.01	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.01	NA	NA	NA	NA	NA.	NA.	<0.025	NA	NA	NA
	E-8@10-11'	11/30/94	NA	NA	NA	<5	<0.005	<0.01	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.01	NA	NA	NA	NA		NA	<0.025		NA	NA
	E-8@15-16'	11/30/94	NA	NA	NA	<5	<0.005	<0.01	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.01	NA	NA	NA	NA	NA	ŅA	<0.025	NA	NA	NA
	E-8@20-21'	11/30/94	NA	NA	NA	<5	<0.005	< 0.01	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	<0.01	NA	NA	NA	NA		NA	<0.025	NA	NA	NA
	E-9@5-6'	11/30/94	NA	NA	NA	1,350	<0.005	0.025	<0.005	< 0.005	< 0.005	< 0.005	<0.005	<0,005	< 0.01	NA	NA	NA:				<0.025	NA	NA	NA
	E-9@10-11'	11/30/94	ÑΑ	NA	NA	18,900	1.43	3.37	0.384	<0.005	0.061	0.033	<0.005	<0.005	<0.01	NA	NA.	NA		•	NA	<0.025	NA	NA	NA
	E-9@15-16'	11/30/94	NA.	NA NA	NA	33,000	1.09	2.61	0.287	<0.005	0.023	0.042	<0.005	<0.005	<0.01	NA.	NA NA	NA NA	NA NA	+-	NA NA	<0.025	NA NA	NA NA	NA NA
	E-9@20-21' E-9@24-25'	11/30/94	NA NA	NA NA	NA NA	15,600	0,017 <0.005	0.0625 <0.01	0.0075 <0.005	<0.005	0.059	<0.005	<0.005	<0.005		NA NA	NA NA	NA NA	NA NA	-	NA NA	<0.025	NA NA	NA NA	NA NA
	E-9@30-31'	11/30/94	NA NA		NA NA	10,900	<0.005	<0.01	<0.005	<0.005	0.104	<0.005	<0.005	<0.005		NA	NA NA	NA			NA.	<0.025	NA NA	NA	NA
	E-11@5-6'	11/30/94	NA		NA	NA	< 0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005		NA	ŇA	NA		-	NA	<0.025	NA NA	NA	NA
	E-11@10-11'	11/30/94	NA	NA	NA	NA	< 0.005	<0.01	<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005		NA	NA	NA		-	NA	< 0.025	NA	NA	NA
	E-11@15-16'	11/30/94	NA	NA	NA	NA	<0.005	<0.01	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005		NA	NA	NA	NA	. NA	NA	< 0.025	NA.	NA	NA
EAST PA	RCEL - ABANDO		RIFIERS																						
PSII	B- 6@10'	08/03/94	<3	<3			<0.0013	<0.0013	<0.0013	< 0.0013	< 0.0013	<0,0013			<0.0013	<0.0013	< 0.0013					<0.0026		<0.0013	<0.0013
	B-7@10'	08/04/94	<3,000	<3,000	31,300	NA	< 0.0013	<0.0013	< 0.0013	<0.0013	0.0027J	0.27		0.24		0.520	< 0.0013	0.150	0.190		0.22	< 0.0026		1.6	0.230
	B-7@15'	08/04/94	<300	<300	12,330	NA	<0.0013	<0.0013	<0.0013	<0.0013	0.27	0.0061	0.0018	< 0.0026		<0.0013	<0.0013	<0.0013	<0.0013		<0.0013	<0.0026		<0.0013	<0.0013
	B-7@20' B-7@25'	08/04/94	NA <300	NA <300	12,330	NA NA	0.0028J <0.0013	<0.0013	<0.0013	<0.0013 <0.0013	0.47	0.0082	0.0016 0.0016	<0.0026		<0.0013	<0.0013 <0.0013	<0.0013 <0.0013	<0.0013 <0.0013		<0.0013 <0.0013	<0.0026 <0.0026		<0.0013	<0.0013
	B-7@25	08/04/94	<3	<300		NA NA	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0082	0.0016	<0.0026		<0.0013	<0.0013	<0.0013	<0.0013		<0.0013			<0.0013	< 0.0013
	[B-7(6)55	1 40/4-/27]	-7	71	11.7	IVA	-0.0013	V0.0013]	V.0.07.	10100107	(0.0015)	V.0013	0.0003	30,0020	/[~0.0015 <u>[</u>	-0.0015¥	₹0.0015	\0.0013	V0.0015	1 10000	~0,0015	10.0020	<0.0015	×0.0015	V0.0013
EAI	E-7@0-1'	11/30/94	NA	NA	NA	2,710	< 0.005	<0.01	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.01	NA	NA	NA	NA	NA	NA	< 0.025	NA	NA	NA
	E-7@7-8'	11/30/94	NA	NA	NA	82	<0.005	< 0.01	<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.01	NA	NA	NA	NA	. NA	NA	<0.025	NA	NA	NΑ
	E-7@15-16'	11/30/94	NA	NA	NA	<	<0,005	<0.01	<0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005		NA	NA	NA			NA	<0.025		NA	NA
	E-7@23-24	11/30/94	NA		NA	<5	< 0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		NA NA		NA				<0.025	NA	NA	NA
	E-7@31-32'	11/30/94	NA	NA	NA	<5	< 0.005	<0.01	< 0.005	<0.005	<0.005	<0.005	<0.005	< 0.005		NA	NA	NA				<0.025	! 	NA	NA
	E-7@39-40'	11/30/94	NA NA	ŅA NA	NA NA	13 <5	<0.005	<0.01	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005 <0.005		NA NA	NA NA	NA NA	NA NA		NA NA	<0.025 <0.025	NA!	NA NA	NA
	E-7@44-45'	11/30/94	NA	NA _j	NA	<u></u>	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<u> </u>	<0.01	NA ₁	NA	NA.	I NA	I NA	Į NA	<0.023	NA	NA	NA
EAl	E-14@5'	12/01/94	NA		NA	23	< 0.005	<0,01	<0.005		<0.005	<0.005	<0.005	<0.005		NA	NA					<0.025	NA	ΝA	NA
	E-14@10'	12/01/94	NA	NA.	NA	16	< 0.005	<0.01	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005		NA	NA					<0.025	NA	NA	NA
	E-14@15'	12/01/94	NA NA	NA	NA NA	16	<0.005	<0.01	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005		NA NA	NA.						NA	NA NA	NA
	E-14@20' E-14@25'	12/01/94 12/01/94	NA NA	NA NA	NA NA	11 23	<0.005	<0.01	<0.005	<0.005 <0.005	<0.005 <0.005	<0.005	<0.005 <0.005	<0.005	<0.01 <0.01	NA NA	NA NA	NA NA						NA NA	NA NA
	E-14@30'	12/01/94	NA NA	NA:	NA NA	18	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		NA NA	NA NA							NA NA	NA NA
	E-14@35'	12/01/94	NA	NĀ	NA.	18	<0.005	<0.01	< 0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.01	NA	NA	NA						NA	NA
	E-14@40'	12/01/94	NA				<0.005	<0.01	< 0.005		< 0.005	<0.005		< 0.005		NA				•				NA	NA
	E-14@45'	12/01/94	NA	NA	NA	23	<0.005	<0.01	< 0.005		< 0.005	< 0.005	<0.005	< 0.005	<0,01	NA	NA		NA	NA.	NA	< 0.025	NA	NA	. NA
	E-15@5'	12/01/94	NA	NA		13	<0.005	<0.01	<0.005	<0.005	<0.005	_<0.005	<0.005	< 0.005		NA	NA	•						NA	NA
	E-15@10'	12/01/94	NA					<0.01	<0.005	<0.005	<0.005	< 0.005		< 0.005		NA	NA		-				-	NA	NA
	E-15@15'	12/01/94	NA	•			<0.005	<0.01	<0.005	<0.005	<0.005	< 0.005		<0.005		NA.	NA	-						NA	N.A
	E-15@20'	12/01/94	NA NA					<0.01	<0.005	<0.005 <0.005	<0.005 <0.005	<0.005		<0.005	•	NA NA	NA NA	NA NA						NA NA	NA NA
	E-15@25' E-15@30'	12/01/94	NA NA				<0.005 <0.005	<0.01 <0.01	<0.005	<0.005	<0.005	<0.005	<0.005 <0.005	<0.003	-	NA NA	NA NA				-			NA NA	NA NA
	E-15@35'	12/01/94	NA NA	NA NA				<0.01	<0.005	<0.005	<0.005	<0.005		<0.005		NA	NA.							NA	NA
	E-15@40'	12/01/94	NA	NA NA			<0.005	<0.01	<0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005		ŇA		NA						NA	NA
	E-15@45'	12/01/94	NA					< 0.01	<0.005	< 0.005	<0.005	<0.005		< 0.005	_	NA			-					NA	NA
EAST PA	RCEL - HISTOR																								
PSII	B-1@2'	08/03/94	⋖					<0.0013	<0,0013	< 0.0013	<0.0013	<0.0013	0.014			<0.0013		<0.0013	-		< 0.0013			< 0.0013	<0.001.
	B-2@2'	08/03/94	<3					<0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	0,0053J	<0.0026		<0,0013	< 0.0013	< 0.0013			< 0.0013	< 0.0026		< 0.0013	< 0.0013
	B-3@2'	08/03/94	<3				<0.0013	< 0.0013	< 0.0013	<0.0013	<0.0013	<0.0013	0.0098	<0.0026		<0.0013	<0.0013	<0.0013	<0.0013		< 0.0013	<0.0026		<0.0013	<0.0013
	B-4@2'	08/03/94	<3	-				<0.0013	<0.0013	<0.0013	<0.0013	<0.0013		<0.0026		<0.0013	<0.0013	<0.0013				<0.0026		<0.0013	<0.0013
	B-8(a)2'	08/04/94	<60	<60]	1,440	NA	<0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	0.0038J	0.14	4 < 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	0.027	<0.0013	< 0.0013	< 0.0013

XL:1576:SOILDATA-HISTHYDROCARBONS-2 Revised PE

TABLE 1
HISTORICAL (1994 - 2010) SOIL TESTING RESULTS - HYDROCARBONS
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670
(concentrations in milligrams per kilogram - mg/kg)

Original in Color

				(8015M)	1	(418.1)									(80	20/8240/826	0B)								
									Ethyl	Isopropyl-			Methylene			n-Butyl	sec-Butyl	n-Propyl		p-Isopropyl	sec-Butyl				
Firm _	Samples ID	Date	TPH-G	TPH-D	ТРН-О	TRPH	Toluene	Xylenes	benzene	benzene	PCE	TCE	Chloride	Acetone	TCFM	benzene	benzene	benzene	Naphthalene		benzene	MEK	1,2,3-TCP 1,3	2	1.1.
EAI	E-10@5-6'	11/30/94	NA	NA	NA	10	<0.005	<0.01	< 0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	<0.01	NA	NA	NA	NA	NA	NA	< 0.025	NA	NA	NA
	E-10@10-11'	11/30/94	NA	NA	NA	<5	< 0.005	<0.01	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.01	NA	NA.	NA	NA NA	NA	NA	<0.025	NA	NA	NA
	E-10@15-16'	11/30/94	NA	NA	NA	< 5	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005		< 0.005	<0.01	NA		NA.		NA	NA	< 0.025	NA	NA	NA
	E-10@20-21'	11/30/94	NA	NA	NA	<5	< 0.005	10.0>	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	< 0.01	NA	ŇΑ	NA		NA	NA	<0.025	NA	NA	NA
	E-12@5-6'	11/30/94	NA	NA	NA	<5	<0.005	<0.01	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.01	NA NA	NA	NA		NA	NA	<0.025	NA	NA NA	NA
	E-12@10-11'	11/30/94	ŅA	NA	NA	<5	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.01	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.025	NA	NA NA	NA NA
	E-12@15-16'	11/30/94	NA	NA NA	NA	<5 <5	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005		<0.005	<0.01	NA NA	NA NA	NA NA		NA NA	NA NA	<0.025	NA NA	NA NA	NA NA
	E-12@20-21'	11/30/94	ÑΑ	NA	NA	<>	<0.005	<0.01	< 0.005	<0.005	<0.005]	<0.005	<0.005	<0.003	<0.01	NA	INA	NA	NA NA	NA	INA	~0.023	NA	INA	INA
EAI	SS-4@21 (a)	12/23/96	743	3,590	3,971	7.530	NA	NA	NA	NA	NA	NA	NA	NA	NA	ΝA	NA	ΝA	NA	NA	NA	NA	NA		
EAST PA	ARCEL - EXCAVA	TION SOIL	L SAMPLE	S			l																		
EAI	Sample 2@6'	02/10/09	<0.1	<10	<50	NA	< 0.005	<0.01	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.020	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.020	<0.005	<0.005
	Sample 3@10'	02/10/09	<0.1	<10	<50	NA	< 0.005	< 0.01	< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.020	<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.020	<0.005	< 0.005
	Sample 4@15'	02/10/09	12.4	4,940	7,100	NA	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	0.071	<0.005	0.027	0.015	0.007	0.021	0.011	< 0.005	<0.005	< 0.020	<0.005	<0.005
	Sample 5@5'	02/10/09	<0.1	<10	<50	NA	<0.005	< 0.01	<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.020	< 0.005	<0,005	< 0.005	<0,005	<0.005	< 0.005	< 0.005	< 0.005	< 0.020	<0.005	<0.005
	Sample 6@4'	02/10/09	<0.1	<10	<50	NA	<0.005	<0.01	< 0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.020	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	< 0.020	<0.005	<0.005
	Sample 7@4'	02/11/09	<0.1	<10	<50	NA_	<0,005	<0.01	< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.020	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.020	<0.005	< 0.005
	Sample 8@9'	02/11/09	<0.1	<10	<50	NA	<0.005	< 0.01	<0.005	<0.005	< 0.005	<0.005		< 0,020	<0.005	<0.005	<0.005	<0.005		<0.005	< 0.005	<0.005	<0.020	< 0.005	< 0.005
	Sample 9@4'	02/11/09	<0.1	<10	<50	NA	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.020	<0.005	< 0.005
	Sample 10@9'	02/11/09	<0.1	<10	<50	NA	<0.005	<0.01	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.020	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.020	<0.005	< 0.005
	Sample 11@4'	02/11/09	<0.1	<10	<50	NA	<0.005	<0,01	<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.020	<0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.020	<0.005	< 0.005
	ARCEL - SEDIME				- T				-0.40#		-0.006	40.005		-0.020	-0.005	-0.005	1 40.005	-0.005	1 40.005	-0.00£	-0.005	-0.00 <i>f</i>	-0.020	-0.005	-0.00
EAI EAST PA	Sediment ARCEL - STOCKP	02/11/09	<0.1	<10	<50	NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005
D2551 + 7	ESP-1	01/28/09	< 0.100	<10	<50	NA	<0.005	< 0.01	<0,005	<0.005	<0.005	< 0.005	< 0.005	<0.020	<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.020	< 0.005	<0.002
	ESP-2	01/28/09	< 0.100	<10		NA.	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005		<0.020	<0.005	<0.005	<0.005	< 0.005		< 0.005	<0.005	<0.005	<0.020	<0.005	< 0.005
	Stockpile C	02/11/09	< 0.100	<10		NA	<0.005	<0.01	< 0.005	<0.005	<0.005	< 0.005		<0.020	<0.005	<0.005	<0.005	<0.005		<0.005	<0.005	<0.005	< 0.020	<0.005	< 0.005
	Stockpile D	02/11/09	527	7.960	8,000	NA		<0.01	0.884	0.610	<0.005	<0.005			<0.005	3.53				3.73		<0.005		< 0.005	4.51
EAST PA	ARCEL - SITE AS																		1						
	B-7Ad5	12/07/09	<10	94.9	198	NA	< 0.005	< 0.01	<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.020	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.020	< 0.005	< 0.005	<0.005
	B-7Ad10	12/07/09	<5,000	16,800	48.300	NA	1.07	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	1.60	<1.0
	B-7Ad15	12/07/09	<10	<10		NA	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.020	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.020	<0.005	<0.005	< 0.005
	B-7Ad20	12/07/09	<500	3,400	12,300	NA	<0.005	<0.01	< 0.005	< 0.005	0.043	<0.005	< 0.005	< 0.020	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.020	<0.005	<0.005	< 0.005
	B-7Ad25	12/07/09	<10			NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0,020	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	<0.020	<0.005	<0.005	<0.003
	B-7Ad30	12/07/09	<10	<10	<50	ΝA	<0.005	<0.01	< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.020	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	< 0.005
	B-7Ad35	12/07/09	<10	<10	<50	NA	< 0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.020	<0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	<0,020	<0.005	<0.005	< 0.005
	B-7Ad40	12/07/09	<10	<10	<50	NA	<0.005	<0,01	< 0.005	<0.005	<0.005	<0.005	< 0.005	< 0.020	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	< 0.00
	B-7Ad45	12/07/09	<10	<10	<50	NA	<0.005	<0.01	< 0.005	<0.005	< 0.005	<0.005	<0.005	<0.020	<0.005	< 0.005		< 0.005		<0.005	<0.005	< 0.020	<0.005	<0,005	<0.003
	B-7Ad50	12/07/09	<10		<50	NA	<0.005	< 0.01	<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.020	<0.005	< 0.005		< 0.005	<0.005	<0.005	< 0.005	< 0.020	<0.005	<0.005	< 0.003
	B-7Ad55	12/07/09	<10	<10				< 0.01			< 0.005	< 0.005			-				1					<0.005	<0.003
	B-7Ad60	12/07/09	<10	<10	<50		<0.005	< 0.01			< 0.005	< 0.005						<0.005	-		< 0.005			<0.005	<0.005
	B-7Ad65	12/07/09	<10	_							<0.005	< 0.005												<0.005	<0.003
	B-7Ad70	12/07/09	<10	<10	<50]	, NA	<0,005	<0.01	< 0.005	<0.005	<0.005	< 0.005	< 0.005	<0.020	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005
EAI	MW-1Ad60	12/07/09	<10	<10	<50	NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.003
	MW-1Ad65	12/07/09	<10		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<0.005				<0.005	< 0.005												<0.005	<0.003
	MW-1Ad70	12/07/09									< 0.005								1		-			< 0.005	<0.00:

5 of 7

TABLE 1
HISTORICAL (1994 - 2010) SOIL TESTING RESULTS - HYDROCARBONS
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670
(concentrations in milligrams per kilogram - mg/kg)

Original in Color

	Т 1	1		(8015M)		(418.1)									(80	20/8240/826	(0R)								
		- 1		(6015141)		(410.1)		1	Ethyl	Isopropyl-	1		Methylene		(00)	n-Butyl	sec-Butyl	n-Propyl		p-Isopropyl	sec-Butyl		1 1	$\overline{}$	
Firm	Samples ID	Date	TPH-G	ТРН-D	трн-о	TRPH	Toluene	Xylenes	benzene	benzene	PCE	TCE	Chloride	Acetone	TCFM	benzene	benzene	benzene	Naphthalene	toluene	benzene	MEK	1,2,3-TCP 1	1,2,4-TMB	1,3,5-TMB
EAL	E-9Ad5	12/07/09	<10	<10	<50	NA	<0.005	<0.01	<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	< 0.005	<0.005	< 0.005
	E-9Ad10	12/07/09	<10	<10	<50	NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	< 0.005
	E-9Ad15	12/07/09	<10	<10	<50	NA	<0.005	<0.01	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.020	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.020	< 0.005	<0.005	< 0.005
	E-9Ad20	12/07/09	<10	<10	<50	NA	<0.005	<0.01	<0.005	<0.005	<u><0.00</u> 5	<0.005	<0.005	<0.020	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005
	E-9Ad25	12/07/09	<10	<10	<50	NA	<0.005	< 0.01	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.020	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.020	<0.005	<0.005	< 0.005
	E-9Ad30	12/07/09	<10	<10	<50	NA	<0.005	< 0.01	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.020	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0,005	<0.020	<0.005	<0.005	<0.005
	E-9Ad35	12/07/09	<10	<10	<50	NA.	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	< 0.005
	E-9Ad40	12/07/09	<10	<10	<50	NA NA	<0.005	<0.01]	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005 <0.005	<0.005	<0.005
	E-9Ad45 E-9Ad50	12/07/09	<10 <10	<10 <10	<50 <50	NA NA	<0.005 <0.005	<0.01	<0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.020 <0.020	<0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005	<0.005 <0.005	<0.020 <0.020	<0.005	<0.005	<0.005 <0.005
	E-9Ad55	12/07/09	<10	<10	<50	NA NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005
	E-9Ad60	12/07/09	<10	<10	<50	NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005
	E-9Ad65	12/07/09	<10	<10	<50	NA	<0.005	<0.01	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.020	< 0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.020	< 0.005	<0.005	< 0.005
	E-9Ad70	12/07/09	<10	<10	<50	NA	<0.005	<0.01	<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.020	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005			<0.005	<0.005
				- 1													•	•			·-		·		
EAI	Sample 4Ad5	12/07/09	<10	14.4	65.1	NA	<0.005	< 0.01	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005			<0.005	<0.005
1	Sample 4Ad10	12/07/09	<10	<10	<50	NA	<0.005	< 0.01	<0.005	<0.005	<0.005	< 0.005		< 0.020	<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005			<0.005	< 0.005
	Sample 4Ad15	12/07/09	<10	<10	<50	NΑ	<0.005	<0.01	< 0.005	<0.005	<0.005	<0.005	<0.005	< 0.020	<0,005	<0.005	<0.005	<0.005	<0.005	<0.005				<0.005	< 0.005
	Sample 4Ad20	12/07/09	<10	<10	<50	NA	<0,005	<0.01	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.020	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.020		<0.005	< 0.005
	Sample 4Ad25	12/07/09	<10	<10	<50	NA	<0.005	<0.01	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.020	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005				<0.005	<0.005
	Sample 4Ad30	12/07/09	<10	<10	<50	NA	<0.005	<0.01	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.020	<0.005	< 0.005	<0.005		<0.005	< 0.005				<0.005	<0.005
	Sample 4Ad35	12/07/09	<10	<10	<50	NA NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005		<0.005	<0.005	-	_		<0.005	<0.005
	Sample 4Ad40 Sample 4Ad45	12/07/09	<10 <10	<10 <10	<50 <50	NA NA	<0.005 <0.005	<0.01 <0.01	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.020 <0.020	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005		<0.020 <0.020	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005
	Sample 4Ad50	12/07/09	<10	<10	<50	NA NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005	<0.005	<0.005		<0.005				<0.005	<0.005
	Sample 4Ad55	12/07/09	<10	<10	<50	NA NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.020	<0.005	< 0.005	<0.005
	Sample 4Ad60	12/07/09	<10	<10	<50	NA.	<0.005	<0.01	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.020	< 0.005	< 0.005		< 0.005	<0.005	<0.005		<0.020		< 0.005	<0.005
	Sample 4Ad65	12/07/09	<10	<10	<50	ΝA	<0.005	<0.01	<0.005	< 0.005	<0.005	< 0.005	<0,005	<0.020	< 0.005	< 0.005		< 0.005	<0.005	< 0.005	+	<0.020	<0.005	<0.005	< 0.005
	Sample 4Ad70	12/07/09	<10	<10	<50	NA	<0,005	< 0.01	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.020	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.020	<0.005	<0.005	
EAST PA	RCEL - REMEDIA	ATION SAI	MPLES (Fe	bruary 2010)																				
EAI	HA-1B@4'	02/22/10	<10	<10	<50	ÑΑ		NA	NA		NA			NA										NA	
	HA-1N@4'	02/22/10	<10	<10	<50	NA	NA	NA	NA		NA	ΝA		NA										NA	
	HA-1S@4'	02/22/10	<10	<10	<50	.NA	NA.	NA.	NA		NA	NA.		ΝA	NA.									NA	
	HA-1E@4'	02/22/10	<10	<10	<50	NA	ÑΑ	NA	NA.		NA.	NA.		NA	+					NA NA	_	-		NA	
	HA-1W@4'	02/22/10	<10	<10	<50	NA	NA	NA	NA NA	NA	NA NA	-	-	NA NA							+	-		NA NA	
	SS-4B@4' SS-4S@3'	02/22/10	<10 <10	<10 <10	<50 <50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	-	NA NA	NA NA	<u> </u>	-			NA NA			+	NA NA	
	SS-4E@3'	02/22/10	<10	<10	<50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	. NA	NA NA	-				+			NA NA	
	SS-SW@3'	02/22/10	<10	<10		NA NA	NA NA	NA NA	NA NA		NA NA			NA NA						NA NA	+	+		NA NA	
	B-7N@6 (b)	02/22/10		<1.0	<50	NA NA	< 0.005		<0.005		<0.00s				<0.005		<0.005	<0.005	 	<0.004	<0.005	1	<0.005		
1			<10								~0.000						~0.003	1		₹0.00.	1				
	B-7S@81 (b)	02/22/10	<10	18.9	69.7	NA		<0.01	<0.005		<0.005							1					_		-
	B-7E@7' (b)	02/22/10	<10	48.1	127	NA	< 0.005	< 0.01	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	<0.005		+		<0.005		1		<0.005	
	B-7B@13 ^(b)	02/22/10	<10	3,040	12,600	NA.	< 0.005	<0.01	<0.005	<0.005	0.010	< 0.005	< 0.005	< 0.020	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	< 0.020	<0.005	<0.005	<0.005
1	CN@8' (b)	02/22/10	<10	13.0	227	NΑ	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.020	<0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.020	<0,005	<0.005	< 0.005
	CE@8' (b)	02/22/10	<10		<50	NA	< 0.005	< 0.01	<0,005	< 0.005	<0.005	<0.005	<0.005	<0.020	<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.020	<0.005	<0.005	< 0.005
	CW@9' (b)	02/22/10	<10	632	2,300	NA.		<0.01	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005		< 0.005			< 0.005			+ +	<0.005	†
		-																	1		1	i e	1		i e
	CBE@12 ^(b)	02/22/10	<10	<10	<50	NA NA	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005		<0.005	<0.003	 	<0.005	1		 	<0.005	
	CBW@15' (b)	02/22/10	<10	562	3,340	NA 22 000	< 0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020	<0.005	< 0.005	< 0.005	<0.005		<0.005		•		<0.005	
	M	AXIMUM	743		48,300	33,000		3.37	0.884	-							-	_	-					1.6	
		SSL SLCC-R	500 NE	1,000 NE	10,000 NE	10,000 NE	0.45		0.9	-	0.15 0.57														+
		SLCC-R	NE NE					600 2,600	5,7 29														-	280	
-		CHHSL-R	NE NE							•	2.7 NE							-	-						
$\overline{}$		CHHSL-I	NE NE																						
		CHH3L-I	NE	INE	NE.	NE	I WE	NE	INE	4 NE	L NE	I NE	1 NE	INE.	4 17	I INE	A INE	-1 1/1Z	4 175	1 1/17	-I INI	4 14.	- <u>1 14.64</u>	INE	1

6 of 7

XL;1576;SOILDATA-HISTHYDROCARBONS-2 Revised PE

TABLE 1
HISTORICAL (1994 - 2010) SOIL TESTING RESULTS - HYDROCARBONS
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

(b) = Sample was also analyzed for SVOCs. No SVOCs were detected

(a) = Sample was also analyzed for PCBs and SVOCs. No PCBs or SVOCs were detected

(concentrations in milligrams per kilogram - mg/kg)

0.51 = Concentration detected exceeds SSL

		ļ		(8015M)		(418.1)									(80	20/8240/82	60B)							
									Ethyl	Isopropyl-	,		Methylene			n-Butyl	sec-Butyl	n-Propyl		p-Isopropy	sec-Butyl	1		1 1 2 1
Firm	Samples ID	Date	ТРН-С	TPH-D	ТРН-О	TRPH	Toluene	Xylenes	benzene	benzene	PCE	TCE	Chloride	Acetone	TCFM	benzene	benzene	benzene	Naphthalene	toluene	benzene	MEK	1,2,3-TCP 1,2,4	⊢TMB 1,3,5-7

7 of 7

Only those VOCs detected are listed

TPH-G = Total Petroleum Hydrocarbons as Gasoline

TPH-D = Total Petroleum Hydrocarbons as Diesel

TPH-D = Total Petroleum Hydrocarbons as Diesel

TPH-O = Total Petroleum Hydrocarbons as Oil

TPH-O = Total Petroleum Hydrocarbons as Oil

TRPH = Total Recoverable Petroleum Hydrocarbons

TRPH = Total Recoverable Petroleum Hydrocarbons

TCFM = Trichlorofluoromethane MEK = Methyl Ethyl Ketone (2-Butanone)

TCE = Trichloroethene 1,2,3-TCP = 1,2,3-Trichloropropane
PCE = Tetrachloroethene 1,2,4-TMB = 1,2,4-Trimethylbenzene
CCFM = Trichlorofluoromethane 1,3,5-TMB = 1,3,5-Trimethylbenzene
MEK = Methyl Ethyl Ketona (2, Butanana)

Original in Color

SLCC-R = EPA Region 9 - "Screening Level for Chemical Contaminants at Superfund Sites" - Residential Land Use (September 2008)

SLCC-I = EPA Region 9 - "Screening Level for Chemical Contaminants at Superfund Sites" - Commercial/Industrial Land Use (September 2008)

CHHSL-R = Cal-EPA - "California Human Health Screening Levels in Evaluation of Contaminated Properties" - Residential Land Use (January 2005)

CHHSL-I = Cal-EPA - "California Human Health Screening Levels in Evaluation of Contaminated Properties" - Commercial/Industrial Land Use (January 2005)

J = Estimated concentration

0.27 = Concentration detected exceeds SSL. However, soil was excavated as part of the remediation efforts completed by BEA in 2006

SSL = Los Angeles RWQCB Soil Screening Levels - Guidance for VOC-Impacted Sites (March 1996) and Petroleum-Impacted Sites (May 1996)

XL:1576:SOILDATA-HISTHYDROCARBONS-2 Revised PE

TABLE 2
HISTORICAL (1994 - 2009) SOIL TESTING RESULTS - TITLE 22 METALS
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670
(concentrations in milligrams per kilogram - mg/kg)

Original in Color

								Total											
Firm	Samples ID						Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zine
PSII	ARCEL - CLAR HA-2@10'	08/04/94	storical Pai	nt/Steam C		(0.8 O.8	<0.2	28.7	14.4	28.1	19	<0.002	<0.4	<0.7	<3.5	<0.3	<10	51.7	58.7
rau	HA-3@4.5'	08/04/94	<4			1.1		40.8	17.8		26		1.9	23.4	<3.5				
WEST P	ARCEL - MAIN			~~	171	1.1	\0.2	40.0]	17.0	31.1	20	0.03	1.7	23.4	₹3.3	~0.5	<u></u>	03.7	121
PSII	B-5@4'	08/03/94	<4	1	119	0.7	<0.2	21.6	12,2	18.5	15	<0.02	<0.4	14.8	<3.5	<0.3	<10	41.4	46.4
- 1001	ARCEL - EQUI					***	,		,-										
PSII	HA-4@2'	08/04/94	<4			0.8	<0.2	24	13.1	17.2	16	<0.02	<0.4	14.7	<3.5	< 0.3	<10	46.3	51
EAST PA	ARCEL - STORA	GE SHED																	
PSII	HA-1@2'	08/03/94	<4	<4	111	0.6	<0.2	26.8	12.6	18.1	28	0.02	<0.4	13.1	<3.5	<0.3	<10	31.1	56.4
	ARCEL - ABANI		ARIFIERS																
PSII	B-6@10'	08/03/94	<4	(8)	224	0.8		36.6	17.4		26		<0.4	24,5	<3.5	0.4	<10		66.7
	B-7@10'	08/04/94	<4	79	193	0.7		30.7	15.4	39.1	22	< 0.02	<0.4	22.9	<3.5	< 0.3	<10		
	B-7@15'	08/04/94	<4	<4				9.4	5.3	12.1	<3	<0.02	<0.4	7	<3.5	<0.3	<10		
	B-7@25'	08/04/94	<4	<4 50		0.2		7.8	4.4 19.4		6		<0.4 <0.4	6 25.5	<3,5 <3,5	<0.3	<10 <10		
E A COE D	B-7@35'	08/04/94	<4		188	0.9	<0.2	30.4	19.4	44.4	<u>27</u>	0.09	<0.4	23.5	<,5,5	0.3	_ <10	07.9	83.2
	B-1@2	08/03/94	<4		259	1.1	<0.2	45	21.9	50.4	31	0.02	2.4	32.2	<3.5	<0.3	<10	79.8	78.2
PSII	B-1@2'	08/03/94	<4	<4	136	5.6		<0.2	12.4	21.6	12		<0.4	<0.7	<3.5	<0.3	<10		53.1
	B-3@2'	08/03/94	<4	45		1.1		39.5	19.1	30.4	30	<0.002	2.1	25.8	<3.5	<0.3	<10	75.1	74.9
	B-4@2'	08/03/94	<4	19	111	0.6		18,3	7	17.5	14	0.02	1.5	10.4	<3.5	<0.3	<10		40
	B-8@2'	08/04/94	<4	<4				71,1	46.2	113	47	0.05	36.8	100	<3.5	<0.3			
	1(-)-	1																	
EAI	SS-1@3"	12/23/96	NA	<5	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA.	NA	NA	NA	NA	NA
	SS-2@3"	12/23/96	<6	<5	77.3	<0.6	1.9	12.8	4.7	13.5	<6	<0.25	<2.5	6	<8	<2,5	<8>	24.7	27
	SS-3@3"	12/23/96	NA	<5	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	ŊA	NA	NA	NA
	SS-5@1'-2'	12/23/96	NA	<5	NA	NA	NA]	NA[NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	NA
	MEDIATION AU																		
BEA	B-7@5'	08/16/06	<2		200	<2		62	17		7.6	< 0.05	<2	29	<0.5	<2			80
	B-7West@5	08/16/06	<2	4.7		<2	<2	53	14	15	6.4	<0.05	<2	24	<0.5	<2		86	
	B-7East@5'	08/16/06	<2	5.6	163	<2		46	11	17	6.1	<0.05 <0.05	<2	22	<0.5 <0.5	<2 <2	<2 <2	81 87	61 101
	E-9West@5' E-9Center@5'	08/17/06 08/17/06	<2 <2	4,0 3.9	159 118	<2 <2		43 18	22 12	47 16	46 6.3	<0.05	3.3 <2	52 17	<0.5	<2		77	54
	E-9East@5	08/17/06	<2	3,6	115	₹ ₹2		201	14	37	16	<0.05	13	97	<0.5	<2	<2	64	69
STIRSTID	FACE UNITS SO						7	20	14	3/]	101	10.00	1.5]	71]		~2	12	_ 04[- 07
EAI	Sample 2@6		<1	3,92	160	<0.5	<0.5	26	9	24	5	< 0.01	<5.0	20	<1.0	<1.0	<1.0	50	52
	Sample 3@10		<u> </u>	2.8.	176	<0.5	<0.5	28	10.	26	6	<0.01	<5,0	22	<1.0	<1.0	<1.0	52	57
	Sample 4@15		<1	1.54	99	<0.5	<0.5	15	5	16	2	<0.01	<5.0	12	<1.0	<1.0	<1.0	29	38
	Sample 5@5		<1	0.87	144	<0.5	<0.5	23	7	15	3	<0.01	<5.0	16	<1.0	<1.0	<1.0	40	51
		AXIMUM	ND	55	259	5.6	1.9	71.1	46.2	113	47	0.09	36.8	100	0	0.4	0	105	121
		SSL	NE	NE	NE	NE	NE	NE	NE	NE	NE	NET	NE	NE	NE	NE	NE	NE	NE
		SLCC-R	31	0.39	15,000	160	70	120,000	23	3,100	400	23	390	1,600	390	390	5.1	390	23,000
		SLCC-I	410	1.6	190,000	2,000	810	150,000	300	41,000	800	310	5,100	20,000	5.100	5.100	66	5,200	310,000
		CHHSL-R	30	0.07	5,200	150	1.7	100,000	660	3,000	150	18	380	1,600	380	380	5.0	530	23,000
		CHHSL-I	380	0.24	63,000	1,700	7.5	100,000	3,200	38,000	3,500	180	4,800	16,000	4.800	4.800	63	6,700	100,000

XL:1576:SOILDATA-HISTMETALS-2 1 of 2

TABLE 2 HISTORICAL (1994 - 2009) SOIL TESTING RESULTS - TITLE 22 METALS 11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

(concentrations in milligrams per kilogram - mg/kg)

NOTES:

<= Not detected at laboratory reporting limit listed</p>

NA = Not analyzed for this chemical

NE = Not established

SSL = Los Angeles RWQCB Soil Screening Levels - Guidance for VOC-Impacted Sites (March 1996) and Petroleum-Impacted Sites (May 1996)

SLCC-R = EPA Region 9 - "Screening Level for Chemical Contaminants at Superfund Sites" - Residential Land Use (September 2008)

SLCC-I = EPA Region 9 - "Screening Level for Chemical Contaminants at Superfund Sites" - Commercial/Industrial Land Use (September 2008)

CHHSL-R = Cal-EPA - "California Human Health Screeing Levels in Evaluation of Contaminated Properties" - Residential Land Use (January 2005)

CHHISL-I = Cal-EPA - "California Human Health Screeing Levels in Evaluation of Contaminated Properties" - Commercial/Industrial Land Use (January 2005)

32 = Concentration detected exceeds SLCC-R, SLCC-I, CHHSL-R and CHHSL-I standards

46.2 - Concentration detected exceeds SLCC-R and/or CHHSL-R standards, but is below SLCC-I and CHHSL-I standards

XL:1576:SOILDATA-HISTMETALS-2 2 of 2

Original in Color

TABLE 3 SUMMARY OF GROUND WATER ELEVATION AND TESTING RESULTS - HYDROCARBONS 11630 - 11700 Burke Street, Santa Fe Springs, CA 90670 (concentrations in micrograms per liter - ug/L)

		Well Casing Elevation	Depth to Ground Water	Ground Water Elevation							Carbon Tetra-								
Well	Date	(feet MSL)	(feet bgs)	(feet MSL)	TPH-G		$\overline{}$	Toluene		Chloroform	chloride		trans-1,2-DCE		_			PCE	TCE
MW-1	10/05/95	152.83	35.83	117.00	NA	NA	NA	<1	<2	1.9	<1	<1	<1	1.4	<1	<1	2.2	158	7.
	01/13/97		38.33	114.50	NA	NA	NA	1.9	2.7	4,5		<0.5	<0.5	1.3	<0.5	0.5	4.3	93	U.
	02/19/09			RY	NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS	NS	N
	07/14/09	155.19*		RY	NS	NS	NS	NS	NS	NS:	NS		NS	NŞ	NS	NS	NS	NS	N
	10/20/09			RY	N\$	NS	NS	NS	NS	NS,	NS	NS	NS	NS	NS	NS	NS	N\$	N
			On Decem	ber 7, 2009	well MW-	l was ab a n	doned and	replaced b	y well MV	V-1D									
MW-1D	01/04/10	154.93	74.72	80.21	<50	<500	NA	</td <td><2</td> <td>1.74</td> <td>me</td> <td></td> <td><1</td> <td><[</td> <td><1</td> <td><1</td> <td><1</td> <td>6.0%</td> <td>3.8</td>	<2	1.74	me		<1	<[<1	<1	<1	6.0%	3.8
	04/26/10		68.29	86.64	<50	<500	NA	<i_< td=""><td><2</td><td>16.3</td><td>8.68</td><td>ব</td><td><i< td=""><td><1</td><td><1</td><td><1</td><td><i< td=""><td>16.7</td><td>7.</td></i<></td></i<></td></i_<>	<2	16.3	8.68	ব	<i< td=""><td><1</td><td><1</td><td><1</td><td><i< td=""><td>16.7</td><td>7.</td></i<></td></i<>	<1	<1	<1	<i< td=""><td>16.7</td><td>7.</td></i<>	16.7	7.
MW-2	01/13/97	149.66	32.14	117.52	NA	NA	NA	<0.5	<1.0	1.5	<0.5	<0.5	<0.5	7.9	1.3	<0.5	3353	298)	(4,
	02/19/09	113100	39.70	109.96	<50	<500	<3,000	<1	<2	<1	<1	ব	<1	<1	<1	<l< td=""><td><1</td><td>7.19</td><td><</td></l<>	<1	7.19	<
	07/14/09	152.01*	41.27	110.74	<50	<500	NA	<1	<2	<1	<l< td=""><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td><td>8,92</td><td><</td></l<>	<1	<1	<1	<1	<1	<1	8,92	<
	10/20/09		Di	RY	'ns	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	N
	01/04/10	- 1	D)	RY	NS	NS	NS	NS	N\$	NS	NS	NS	NS	NS	NS	N\$	NS	NS	N.
	04/26/10		D	RŶ	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	N.
MW-3	07/14/09	154.93	68,67	86,55	<50	<500	NA	<1	<2	36.1	TA STATE	<1	<1	<1	<1	<1	<1	A	4.1
	10/20/09		Di		NS	NS	NS	NS	NS	NS	NS		NS	NS	NS	NS	NS	NS	
	01/04/10	1	D1	RY	NS	NS	NS	NS	NS	NS	NS.	, NS	NS	NS	NS	NS	NS	NS	N:
	04/26/10		68.49	86.73	NS	NS	NS	<1	<2	9.32	<1	2,69	13.0	<1	<1	<1	<l< td=""><td>130(1)</td><td>60.</td></l<>	130(1)	60.
entra 4	020 4/00	155.074	70.05	95.03		-6001	MAI	-11	<2	411	1.34	1.52	1,22	4	<1	-1	<1	13	6.0
MW-4	07/14/09	155.07*	70.05	85.02	<50 <50	<500 <500	NA NA	<1 <1	- <2	4.11 11.3	7.93	1.32	1.01	<1	<1	<u><1</u> <1	<1	16.4	
	10/20/09	-	74.52	80.55 78.56	<50 <50	<500	NA NA	<1	<2	13.3	10.5	<1		<1	<1;	<1	<1	20.4	4.95
	01/04/10 04/26/10		76.51 69.83	85.24	<50	<500	NA NA	<1 <1	<2	9.02	6,92	<1	<1	<1	<1	<i< td=""><td><1 <1</td><td>11.3</td><td>3.7</td></i<>	<1 <1	11.3	3.7
								1251	1 850			3.00		neo	-1	0.5			
				inant Level	NE	NE	NE	150	1,750	NE	0.5		NE, DIPE, MTBE,		5		6	5	

1 of 1 XI:1576.GWDATASUM-HYDROCARBONS

Elevations for wells MW-1 and MW-2 based on established elevation (151.71 feet MSL) for off-site Phibro-Tech well MW-3

^{* =} Surveyed to LA County Department of Public Works Bench Mark #Y-6668 by Evans Land Surveying on July 6, 2009.

⁽i) = Well was not purged, Only one foot of water in the well end cap, Probably not representative of ground water conditions.

< = Not detected at laboratory report limit listed

NA = Not analyzed for this chemical

NE = Not Established

NS = Not sampled - well dry

^{1.1 =} Concentration detected exceeds MCL

TABLE 4
SUMMARY OF GROUND WATER TESTING RESULTS - METALS
11630 - 11700 Burke Street, Sante Fe Springs, CA 90670
(concentrations in milligrams per liter - mg/L)

							Total	Hexavelent							<u> </u>		İ		
Well	Date	Antimony	Arsenic	Barlum	Beryllium	Cadmium	Chromium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
MW-1	10/05/95	<0.1	<0.1	0.38	< 0.01	< 0.02	0.06	ŇΑ	<0.03	<0.05	< 0.12	<0.005	<0.05	<0.04	<0.1	< 0.02	< 0.16	0.07	0.09
	01/13/97	<0.1	<0.1	0.52	<0,01	< 0.02	0.08	NA.	< 0.03	0.07	<0.12	< 0.005	<0.05	<0.04	<0.1	<0.02	<0.16	0.13	0.15
	02/19/09	NS	NS	NS	NS	NS	NS	NS	NS.	NS	NS	NS	NS	NS	NS	NS	NS		NS
	07/14/09	NS				NS	NS	NS	NS	NS	NS	NS	N\$	NS	NS	NS	NS		NS
	10/20/09	NS	NS			NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	04/26/10		Ов Dесеп	iber 7, 200	9 well MW-1	was abando	ned and repl	aced by well	MW-1D								<u> </u>		
1 111 1 1 1 1	1 04 10 44 4 1	201	5.01		1	2/4	.0.01	0.0045	374	2111	37.1	374	374	27.4	27.1	27.4			374
MW-1D	01/04/10	NA				NA.	< 0.01	0.0037	NA	NA	NA	NA	NA:	NA.	NA NA	NA	NA NA		NA NA
	04/26/10	NA	NA	NA	NA	NA	<0.01	0.0043	NA	NA	NA	NA	'nΑ	NA	NA.	NA	NA	NA	- NA
MW-2	01/13/97	<0.1	<0.1	0.44	<0.01	< 0.02	0.09	NA	0.04	0.08	<0.12	<0.0005	<0.05	0.05	<0.1	<0.02	<0.16	0.14	0.19
	02/19/09	NA.	NA			NA	< 0.01	0.0039	NA	NA	NA	NA	ŇA	NA	NA	NA	NΑ		NA
)	07/14/09	NA	NA		NA	NA	0.061	0.00432	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	10/20/09	NS	NS			NS	N\$	NS.	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	01/04/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS.	NS	NS	NS	NS	NS
	04/26/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	N\$	NS	NS	NS	NS	NS
MW-3	07/14/09	NA.	NA		NA	NA	<0.01	<0.0002	NA	NA	NA	NA	NA	N <u>A</u>	NA	NA.	NA	-	NA
	10/20/09	NS	NS			N\$	NS	NS	NS	NS	NS.	NS	NS	NS.	NS	NS	NS		NS
	01/04/10	NS	NS		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS
	04/26/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS,	NS	NS	NS	NS	ŊS
101/4	1000 400	374	274	374	374	27.4	-0.01	0.00448	374	27.4	2141	NY A	274	374	37.4.1	DT 4	NA	NT A	
MW-4	07/14/09	ŅA	NA	NA		NA.	< 0.01	0.00443	NA	NA	NA	NA.	NA	NA	NA	NA.			NA
	10/20/09	NA	NA	NA	NA.	NA NA	<0.01	0,0040	NA.	NA	NA.	NA NA	NA.	NA NA	NA.	NA NA	NA.		NA NA
	01/04/10	NA	NA	NA	NA.	NA	<0.01	0.0036	NA	NA NA	NA	NA NA	NA	NA	NA.	NA	NA.	-	NA NA
L	04/26/10	NA	NA	NA	NA:	NA	<0.01	0.0034	NA	NA]	NA,	NA	NA	NA	NA	NA	NA	NA!	NA.

Ground water samples collected on January 13, 1997 were also analyzed on a filtered basis. No metals were detected in the filtered ground water samples

XL:1576:GWDatasum-metals 1 of 1

< Not detected at laboratory reporting limit listed

NA Not analyzed for this chemical

NS Not sampled - well dry

TABLE 5
SOIL TESTING RESULTS - BEA REMEDIATION AUGUST 2006
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670
(concentrations in milligrams per kilogram - mg/kg)

			(8015M)		(826	(0B)					(60101	B/7471A)				
									Total							
Sample ID	Date	TPH-G	TPH-D	ТРН-О	Toluene	Xylenes	Агвепіс	Barium	Chromium	Cobalt	Copper		Molybdenum	Nickel	Vanadium	Zinc
B-7@5'	08/16/06	<0.5	<5	<50	< 0.002	<0.004	5.8	200	62	17	17	7.6		29	105	80
B-7@10'	08/16/06	<0.5	<5	<50	< 0.002	< 0.004	NA	ŅĄ	NA	NA	NΑ	NA	NA	NA	NA	NA
B-7@15'	08/16/06	<0.5	<5	<50	< 0.002	< 0.004	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
B-7@18'	08/16/06	<0.5	<5	<50	< 0.002	< 0.004	NA	NA	NA	NA	NA	NA	NA	ŇA	NA	NA
B-7West@5'	08/16/06	<0.5	<5	<50	< 0.002	< 0.004	4.7	170	53	14	15	6,4	<2	24		70
B-7West@10'	08/16/06	<0.5	<5	<50	< 0.002	< 0.004	NA	NA	NA	N.A.	NA	NA	NA	ŅA	NA	NA
B-7West@15'	08/16/06	< 0.5	<5	<50	<0.002	< 0.004	NA	ŇΑ	NA.	NA	NA	NA	NA	NA	NA	NA
B-7West@18'	08/16/06	<0.5	<5	<50	< 0.002	<0.004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B-7East@5'	08/16/06	<0.5	<5		<0.002	<0.004	5.8	163	46	11	17	6.1	<2	22		61
B-7East@10'	08/16/06	<0.5	<5	<50	<0.002	< 0.004	NA	NA	NA	NA	NA	ΝA	NA.	NA	NA	NA
B-7East@15'	08/16/06	<0.5	<5	<50	<0.002	< 0.004	ÑΑ	NA	NA	NA	NA	N <u>A</u>	NA	NA	NA	NA
B-7East@20'	08/16/06	<0.5	<5	<50	<0.002	< 0.004	NA	NA	NA	NA	NA	ŇΑ	NA	NA.	NA	NA
E-9West@5'	08/17/06	<0.5	146	183	< 0.002	<0.004	4	159		22	47	46	3.3	52	$\overline{}$	101
E-9West@10'	08/17/06	<0.5	5.2	<50	< 0.002	< 0.004	'nΑ	NA	NA	NA	NA	NA	NA.	ŅA	NA	NA
E-9WEst@15'	08/17/06	<0.5	<5	<50	< 0.002	< 0.004	NA	NA	NA	NA	NA:	NA	NA.	N.A.	NA	NA
E-9West@20'	08/17/06	<0.5	<5	<50	< 0.002	< 0.004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.
E-9Center@5'	08/17/06	< 0.5	<5	<50	< 0.002	< 0.004	3.57	118	18	12	16	6.3	<2	17	77	54
E-9Center@10	08/17/06	<0.5	8.8	<50	0.0046	0.0056	NA	NA	NA NA	NA.	NA	NA	NA	NA	NA	NA
E-9Center@15'	08/17/06	<0.5	<5	<50	< 0.002	< 0.004	NA	NA	NA	NA	NA	NA	NA.	NA	ŅA	NA
E-9Center@201	08/17/06	<0.5	<5	<50	< 0.002	< 0.004	NA	NA	NA	NA.	NA	NA	NA	NA	NA	ΝA
E-9East@2'	08/17/06	<0.5	<5	<50	< 0.002	<0.004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
E-9East@5'	08/17/06	< 0.5	84	30J	< 0.002	<0.004	3,6	115	20	14	37	16	13	97	64	69
E-9East@10'	08/17/06	< 0.5	<5	<50	< 0.002	< 0.004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
E-9East@15'	08/17/06	<0.5	<5	<50	< 0.002	<0.004	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
E-9East@20'	08/17/06	<0.5	<5	<50	< 0.002	< 0.004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

XL:1576:SOILREMEDIATION2006 1 of 2

TABLE 5
SOIL TESTING RESULTS - BEA REMEDIATION AUGUST 2006
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670
(concentrations in milligrams per kilogram - mg/kg)

			(8015M)		(826	0B)					(6010)	B/7471A)				
Sample ID	Date	трн-с	трн-р	трн-о	Toluene	Xylenes	Arsenic	Barium	Total Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Vanadium,	Zine
	MAXIMUM	ND	146	183	0.0046	0.0056	5.8	200	62	22	47	46	13	97	105	101
				•												
	SSL	500	1,000	10,000	0.45	5.25	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	SLCC-R	NE	NE	NE	5,000	600	0.39	15,000	120,000	23	3,100	400	390	1,600	390	23,000
	SLCC-I	NE	NE	NE	46,000	2,600	1.6	190,000	150,000	300	41,000	800	5,100	20,000	5,200	310,000
	CHHSL-R	NÉ	NE	NE	NE	NE	0.07	5,200	100,000	660	3,000	150	380	1,600	530	23,000
	CHHSL-I	NE	NE	NE	NE	NE	0.24	63,000	100,000	3,200	38,000	3,500	4,800	16,000	6,700	100,000

Only those VOCs (including fuel oxygenates) and Title 22 Metals detected are listed

< = Not detected at laboratory reporting limit listed

NA = Not analyzed for this chemical

ND = Not detected. Detection limits ranged from 0.005 mg/kg to 0.05 mg/kg

NE = Not established

TPH-G = Total Petroleum Hydrocarbons as Gasoline

TPH-D = Total Petroleum Hydrocarbons as Diesel

TPH-O = Total Petroleum Hydrocarbons as Oil

SSL = Los Angeles RWQCB Soil Screening Levels - Guidance for VOC-Impacted Site (March 1996) and Petroleum-Impacted Sites (May 1996)

SLCC-R = EPA Region 9 - "Screening Level for Chemical Contaminants at Superfund Sites" - Residential Land Use (September 2008)

SLCC-I = BPA Region 9 - "Screening Level for Chemical Contaminants at Superfund Sites" - Commercial/Industrial Land Use (September 2008)

CHHSL-R = Cal-EPA - "California Human Health Screeing Levels in Evaluation of Contaminated Properties" - Residential Land Use (January 2005)

CHHSL-I = Cal-EPA - "California Human Health Screeing Levels in Evaluation of Contaminated Properties" - Commercial/Industrial Land Use (January 2005)

5.8 = Concentration detected exceeds SLCC-R, SLCC-I, CHHSL-R and CHHSL-I standards

XL: 1576:SOILREMEDIATION2006 2 of 2

SOIL TESTING RESULTS - EAI SUBSURFACE UNITS REMOVAL FEBRUARY 2009
11630-1170 Burke Street, Santa Fe Springs, CA 90670
(concentrations in milligrams per kilogram - mg/kg)

											104	- ny						(8270C)	(8082)		· · · · · · ·				(40103	B/7471A)					$\overline{}$
	l .			(8015M)			77.17.4	×	- 1		(82)		- D	B	- B		4 Tex1	(4414.07	(8002)				Total	Т	(09103	Di 74 1 1 Ail	- 1		· · · · · · · · · · · · · · · · · · ·		$\overline{}$
		Subsurface	l					Isopropyl-				Total			n-Propyl		4-Isopropyl	Bis(2-Ethylhexyl)	AH DCD-		n	G-3-4		Caball	Canasa	1004	N. S. andream .	Molyhdenum	Nickel	Vanadium	71-0
Sample ID	Date	Unit No.	TPH-G	TPH-D	TPH-O	Acctone	beuzene	benzene	Taluene	I,2,4-TMB	1.3.5-1 MB	Xylenes	benzene	benzene	benzene 1	Naphthalene	toluene	Phthalate	All PCBs	Arsenic [Barium	Cadmium	CERODULEI	Cobait	Copper	1.ead	Mercury	Molynaemuni	-Alckei [Vanadium	Zinc
EXCAVATION		MPLES													0.005		0.804	-0.00	555	Day See	744	-6.5	26.0	8.78	23.8	4.93	<0.01	O	Do of	50.01	
Sample 2@6'	02/10/09	3	<0,1	<10	<50	<0.020	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0,005	< 0.005	<0.005	<0.005	<0.005	<0.50		3.94	176	<0.5	25.8	4.77.0	26.1	115 0		<5,0		50.2	52.4
Sample 3@10'	02/10/09	3	<0.1	<10	<50	<0.020	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.50		2.85	170	<0.5	2010	9.79	4011	5.92	<0.01	<5.0		51.6	56.9
Sample 4(0)15'	02/10/09	3	12.4	1,540	7,100	0.071	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	0.027	0.015	0.007	0.021	0.011	<0.50		1.54	99.2	<0.5	14.5	4,82	15.6	2,46	<0.01	<5.0		28.5 39.9	38.3 50.5
Sample 5@51	02/10/09	4 & 5	<0.1	<10	<50	<0.020	<0.005	<0,005	<0,005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.50		0.810	144	<0.5	22.7	6.68	14.8	2.88	<0,01	<5.0			30.5
Sample 6@4'	02/10/09	4 &5	<0.1	<10	<50	<0.020	< 0.005	< 0.005	<0.005	<0.005	<0,005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.50		<0.3	177	<0.5	30.0	9.37	18.7	0.10	0.167	<5.0		52.4	56.8 49.8
Sample 7@41	02/11/09	4 &5	<0.1	<10	<50	<0,020	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0,005	<0.005	<0.005	<0.005	<0.50		<0.3	163	<0,5	25,2	8.20	17.4	5.00	<0.01	<5.0		47.4	
Sample 8@91	02/11/09	4 & 5	<0.1	<10	<50	<0.020	<0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0. <u>00</u> 5	<0.005	<0.50		<0.3	155	∹0.5	28.0	8,81	23,2	5.87	<0.01	<5.0		52.2	54.6
Sample 9@4'	02/11/09	4 &5	<0.1	<10	<50	< 0.020	<0,005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0,50		<0.3	145	<0.5	26.1	8.22	16,1	4.71	<0.01	<5.0		47.6	53.2
Sample 10@9	02/11/09	4 & 5	<0.1	<10	<50	<0.020	< 0.005	< 0.005	<0.005	<0,005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.50		<0,3	176	<0.5	28.9	9.06	26.4	6.27	<0,01	<5.0		54.7	57.9
Sample 11@4'	02/11/09	4 &5	<0.1	<10	<50	<0.020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0,005	<0.005	< 0.005	<0.005	<0.005	<0.50		<0.3	118	<0,5	20.0	6.52	14.3	3.67	<0.01	<5,0		37.2	46.1
	1	MAXIMUN	f. 12.4	4,940	7,100	0,071	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.027	0.015	0.007	0.021	0.011	<0.50	NA.	3.92	177	<0.5	30	9.79	26.4	6.27	0.167	0	22.3	54.7	57.9
SEDIMENT																															
Sediment	02/11/09	4&5	<0.1	<10	<50	<0.020	<0.005	<0.005	<0,005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.50		<0,200	102	3.16	113	59.5	99.4	81.8		<5.0		22.0	699
		MAXIMUN	1 <0,1	<10	<50	<0.020	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0,005	<0.005	< <u>0.005</u>	<0.005	<0.005	<0.50	NA	<0.200	162	3.16	113	59.5	99,4	81.8	0.0099	<5.0	27.2	22.0	699
STOCKPILE :	SOIL SAMP	PLES																													
ESP-1	01/28/09	T -	<0.100	<10	~50	< 0.020	~0.005	< 0.005	< 0.005	< 0.005	< 0.005	:0.005	< 0.005	< 0.005	< 0.005	~0.005	< 0.005	<0.59	< 0.01	4.27	193	<0.5	27.2	9,37	32.8	7.79	<0.01			27.4	69.2
ESP-2	01/28/09	<u> </u>	< 0.100	<:10	<50	< 0.020	< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0,552	<0,01	3,56	141	-:0.5	21.3	7.69	26,2	6.06	<0.01			37.7	59.2
Stockpile C	02/11/09	_	< 0.100	<10	<50	< 0.020	< 0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	-0.005	< 0.005	< 0.005	<0.50	< 0.50	< 0.3	157	< 0.5	29.1	9.54	23.4	5.93	0.0668	<5.0	_	52.6	56.1
Stockpile D	02/11/09		527	7,960	8.000	< 0.020	0.884	0.610	2.31	27.0	4.51	8,27	3.53	2.25	2.03	4,31	3,73	17.2	< 0.50	< 0.3	142	< 0.5	224	9.91	973	41.8	0.167	13.0		31.3	215
		MAXIMUN	1 527	7.960	8.000	O.	0.884	8.610	2.31	27.0	4.51	8.27	3,53	2.25	2.03	4.31	3.73	17.2	< 0.50	4.27	193	<0.5	224	9.91	973	41.8	0.167	13.0	25.7	52.6	215
<u> </u>		SS	500	1,000	10,000	NE	0.9	NE	0.45	NE	NE	5.25	NE	NE	NE	NE	NE	NE.	NE	NE	NE	NE	NE	NE	'ne	NE	NE			NE	NE
		SLCC-	NE.	NE	NE	61,000	5.7	2,200	5,000	87	NE	600	. NE	NE	NE	3.9	NE.	35	0.17	0,39	15,000	70	120,000	23	3,100	400		390	2,000	390	23,000
		SLCC	I NE	NE	NE	610,000	29	11,000	46,000	400	NE	2,600	'nĖ	ΝE	NE	20	NE.	120	0.62	1.6	190,000	810	150,000	300		800	310	5,100	20,000	5,200	310,000
		CHHSL-	NE.	N.E	NE	NE	NE	NE	NE.	NE.	NE.	NE	NE	NE	NE	NE	NE	NE	0.089	0.07	5,200	1.7	100,000	660	3,000	150	18	380	1,600	530	23,000
		CHHSL	I NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE NE	0.30	0.24	63,000	7.5	100,000	3,200	38,000	3,500	180	4,800	16,000	6,700	100,000

Only those chemicals detected are listed

l of 1 ML:1576:55/ELDATA-EAROP-FABLL®

Original in Color

<= Not detected at laboratory reporting limit listed

ND = Not detected

NE = Not established

NE = Not established

SSL = Los Angeles RWQCB Soil Screening Levels - Guidance for VOC-Impacted Sites (March 1996) and Petroleum-Impacted Sites (May 1996)

SLCC-R = EPA Region 9 - "Screening Level for Chemical Contaminants at Superfund Sites" - Residential Land Use (September 2008)

SLCC-I = EPA Region 9 - "Screening Level for Chemical Contaminants at Superfund Sites" - Commercial/Industrial Land Use (September 2008)

CHHSL-R = Cal-EPA - "California Human Health Screeing Levels in Evaluation of Contaminated Properties" - Residential Land Use (January 2005)

CHHSL-I = Cal-EPA - "California Human Health Screeing Levels in Evaluation of Contaminated Properties" - Commercial/Industrial Land Use (January 2005)

32 = Concentration detected exceeds SLCC-I, CHHSL-I or SSL standards

Concentration detected exceeds SLCC-R or CHHSL-R standards, but is below SLCC-I and/or CHHSL-I standards

TABLE 7
SUMMARY OF WELL CONSTRUCTION DATA
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

Well	Date Completed	Installed By	Well Permit Number	Casing Diameter (inch)	Total Depth (feet bgs)	Screen Interval (feet bgs)	Slot Size (inch)	Well Elevation (feet)
MW-1 (a)	10/03/95	EAI	?	2	53	33 - 53	0.020	155.19
MW-1D	12/07/09	EAI	890007	2	80	60-80	0.020	154.93
MW-2	12/23/96	EAI	?	2	55	30 - 55	0.020	152.01
MW-3	06/30/09	EAI	9234	2	70	40-70	0.020	155.22
MW-4	06/30/09	EAI	9234	2	80	50-80	0.020	155.07

Well elevation data based on Evans Land Surveying and Mapping survey (NAVD'88) Bench Mark # Y-6668, Elevation = 155.530 ft. (2005 adj.)

XL:1576:WELLCONSTRUCTION 1 of 1

⁽a) = Well abandoned on 12/07/09 and replaced by well MW-ID

TABLE 8
SOIL GAS TESTING RESULTS - VOCs EPA METHOD 8260B
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670
(concentrations in micrograms per liter - ug/L)

Sample ID	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Chloroform	CTC	TCE	PCE
A4@5'	02/23/09	0.26	<1.0	< 0.50	<0.50	< 0.10	< 0.10	< 0.10	< 0.10
A4@15'	02/23/09	0.15	<1.0	< 0.50	<0.50		< 0.10	<0.10	2.9
A4@15' D	02/23/09	0.10	<1.0	< 0.50	< 0.50	<0.10	<0.10	< 0.10	2.4
A5@5'	02/23/09	<0.10	<1.0		< 0.50		< 0.10	< 0.10	< 0.10
A5@15'	02/23/09	< 0.10	<1.0	< 0.50	< 0.50	<0.10	<0.10	< 0.10	2.4
D1 G5	1.00/04/00	CO 10	-1 O	<0.50	<0.50	<0.10	<0.10	<0.10L	0.10
B1@5'	02/24/09	<0.10 <0.10	<1.0	\$.	<0.50 <0.50		<0.10	<0.10	0.18
B1@5' D	02/24/09	<0.10	<1.0 <1.0		<0.50		<0.10 <0.10	<0.10 0.15	0.10
B1@15'	02/24/09	<0.10	<1.0	<0.50	<0.50	1 <0.10	0.10	0.13	6.6
B2@5'	02/24/09	0.11	<1.0	<0.50	<0.50	<0.10	< 0.10	<0.10	0.47
B2@15'	02/24/09	<0.10	<1.0		< 0.50		< 0.10	0.36	12
21011	1								
B3@5'	02/24/09	< 0.10	<1.0	< 0.50	< 0.50	< 0.10	< 0.10	<0.10	0.34
B3@15'	02/24/09	< 0.10	<1.0	< 0.50	< 0.50	< 0.10	< 0.10	0.59	14
B4@5'	02/23/09	< 0.10			<0.50		< 0.10	< 0.10	0.17
B4@15'	02/23/09	0.16	<1.0	<0.50	<0.50	< 0.10	< 0.10	0.59	9.4
D5 () 5!	102/24/00	-0.10	-1.0	<0.50	<0.50	-0.10	c0.10	-0.10Ĭ	
B5@5'	02/24/09	<0.10			<0.50		<0.10	<0.10	0.24
B5@15'	02/24/09	<0.10	<1.0	<0.50	<0.50	<0.10	<0.10	0.56	9.3
B6@5'	02/24/09	<0.10	<1.0	<0.50	<0.50	<0.10	<0.10	< 0.10	<0.10
B6@15'	02/24/09	<0.10	<1.0		<0.50		< 0.10	0.41	5.4
206312	02.21/02	1 0.10	-1.0		-0,20	10.10	-0,10	0.11	
C1@5'	02/24/09	< 0.10	<1.0	<0.50	< 0.50	<0.10	< 0.10	< 0.10	0.46
C1@15'	02/24/09	< 0.10	<1.0	< 0.50	< 0.50	< 0.10	< 0.10	0.12	7.9
C2@5'	02/24/09	<0.10	<1.0	< 0.50	< 0.50		<0.10	< 0.10	0.27
C2@15'	02/24/09	< 0.10	<1.0	< 0.50	< 0.50	<0.10	<0.10	0.35	5.8
	T 00/01/00	1 .0.10	1 2 2			1	0.40		
C3@5'	02/24/09	< 0.10	<1.0		< 0.50		<0.10	< 0.10	0.42
C3@15'	02/24/09	< 0.10	<1.0	< 0.50	< 0.50	<0.10	< 0.10	2.3	16
C4@5'	02/24/09	< 0.10	<1.0	<0.50	<0.50	<0.10	< 0.10	<0.10	<0.10
C4@15'	02/23/09			<u> </u>			<0.10	0.75	4.6
C4@15' D	02/23/09	<0.10					<0.10	0.75	4.7
C16313 2	02.25705	-0.10	-110	1 0,50	3 -0.50	-0110	-0.10	0.75	-1.7
C5@5'	02/23/09	<0.10	<1.0	<0.50	<0.50	<0.10	< 0.10	< 0.10	0.19
C5@15'	02/23/09	<0.10	<1.0	<0.50	<0.50	<0.10	< 0.10	0.49	4.1
			,		,				
C6@5'	02/23/09	<u> </u>		1			<0.10		<0.10
C6@15'	02/23/09	< 0.10	<1.0	<0.50	<0.50	<0.10	< 0.10	0.34	2.2
D1@5!	1.02/22/00	1 -0.10	-10	70.50	<0.50	-0.10	∠0.10 ¹	Z0 10	0.10
D1@5'	02/23/09	1	4			1	<0.10		0.19
D1@15'	02/23/09	< 0.10	<1.0	<0.50	<0.50	<0.10	<0.10	< 0.10	2.4

XI.:1576:SOILGASDATA-8260B 1 of 4

TABLE 8
SOIL GAS TESTING RESULTS - VOCs EPA METHOD 8260B
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

(concentrations in micrograms per liter - ug/L)

Sample ID	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Chloroform	CTC	TCE	PCE
D2@5'	02/23/09	0.16	<1.0	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	<0,10
D2@15'	02/23/09	0.11	<1.0	<0.50	< 0.50	< 0.10	< 0.10	0.36	6.1
D3@5'	02/23/09	<0.10	<1.0	<0.50	<0.50	<0.10	<0.10	<0.10	<0.10
D3@15'	02/23/09	<0.10	<1.0	< 0.50	<0.50	<u>. </u>	<0.10	3.7	9.9
D4@5'	02/23/09	<0.10	<1.0	<0.50	<0.50	<0.10	<0.10	<0.10	0.36
D4@15'	02/23/09	0.12	<1.0		< 0.50		0.12	3.1	17
D5@5'	02/23/09	0.15	<1.0	<0.50	<0.50	<0.10	<0.10	<0.10	<0.10
D5@15'	02/23/09	0.13	<1.0	<0.50	< 0.50		0.17	0.67	4.0
D6@5'	02/23/09	0.14	<1.0	<0.50	<0.50	<0.10	<0.10	<0.10	<0.10
D6@15'	02/23/09	0.12	<1.0	<0.50	<0.50	<0.10	< 0.10	<0.10	0.50
E1@5' (PV 1)	02/23/09	< 0.10	<1.0	<0.50	<0.50	<0.10	<0.10	<0.10	0.15
E1@5' (PV 3)	02/23/09	< 0.10	<1.0	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	0.16
E1@5' (PV 7)	02/23/09	< 0.10	<1.0	< 0.50	< 0.50	<0.10	< 0.10	< 0.10	0.14
E1@15'	02/23/09	0.11	<1.0	<0.50	<0.50	< 0.10	<0.10	<0.10	6.8
E2@5'	02/23/09	0.12	<1.0	<0.50	<0.50	<0.10	<0.10	<0.10	<0.10
E2@15'	02/23/09	<0.10	<1.0	< 0.50	<0.50	<0.10	<0.10	0.16	6.0
E3@5'	02/23/09	<0.10	<1.0	<0.50	<0.50	<0.10	<0.10	< 0.10	<0.10
E3@15'	02/23/09	<0.10	<1.0	< 0.50	< 0.50	< 0.10	<0.10	<0.10	0.88
E4@5'	02/23/09	0.18	<1.0	<0.50	<0.50	<0.10	<0.10	<0.10	<0.10
E4@15'	02/23/09	< 0.10	1.0	0.65	3.22	0.15	0.12	1.7	5.8
E5@5'	02/23/09	0.13	<1.0	< 0.50	<0.50	<0.10	< 0.10	<0.10	<0.10
E5@15'	02/23/09	0.10	<1.0	<0.50		0.13	<0.10	0.45	0.8

Only those volatile organic compounds detected are listed

< = Not detected at laboratory reporting limit listed

D = Duplicate sample

PV = Purge volume

CTC = Carbon Tetrachloride

TCE = Trichloroethene

PCE = Tetrachloroethene

XL::576:SOILGASDATA-8260B 2 of 4

TABLE 8
SOIL GAS TESTING RESULTS - VOCs EPA METHOD 8260B
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670
(concentrations in micrograms per liter - ug/L)

Sample ID	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Chloroform	CTC	TCE	PCE
SOIL SAMPL		ECTED FI	ROM 5 FE	ET BGS		·			
A4@5'	02/23/09	0.26	<1.0	<0.50	< 0.50	<0.10	< 0.10	< 0.10	< 0.10
A5@5'	02/23/09	< 0.10	<1.0	< 0.50	<0.50	< 0.10	< 0.10	< 0.10	< 0.10
B1@5'	02/24/09	< 0.10	<1.0	< 0.50	< 0.50	< 0.10	<0.10	< 0.10	0.18
B1@5' D	02/24/09	< 0.10	<1.0	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	0.10
B2@5'	02/24/09	0.11	<1.0	< 0.50	< 0.50	< 0.10	<0.10	< 0.10	0.47
B3@5'	02/24/09	< 0.10	<1.0	<0.50	< 0.50	<0.10	<0.10	< 0.10	0.34
B4@5'	02/23/09	< 0.10	<1.0	< 0.50	< 0.50		<0.10	<0.10	0.17
B5@5'	02/24/09	< 0.10	<1.0	< 0.50	<0.50		< 0.10	< 0.10	0.24
B6@5'	02/24/09	< 0.10	<1.0	<0.50	<0.50		<0.10	< 0.10	< 0.10
C1@5'	02/24/09	< 0.10	<1.0	< 0.50	< 0.50	<0.10	<0.10	< 0.10	0.46
C2@5'	02/24/09	< 0.10	<1.0	< 0.50	< 0.50		<0.10	< 0.10	0.27
C3@5'	02/24/09	< 0.10	<1.0	< 0.50	< 0.50		<0.10	< 0.10	0.42
C4@5'	02/24/09	< 0.10	<1.0	< 0.50	<0.50	< 0.10	<0.10	< 0.10	<0.10
C5@5'	02/23/09	< 0.10	<1.0		<0.50	< 0.10	<0.10	< 0.10	0.19
C6@5'	02/23/09	< 0.10	<1.0	<0.50	<0.50	< 0.10	< 0.10	< 0.10	< 0.10
D1@5'	02/23/09	<0.10	<1.0		<0.50	1	<0.10	< 0.10	0.19
D2@5'	02/23/09	0.16	<1.0	<0.50	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10
D3@5'	02/23/09	< 0.10	<1.0	<0.50	<0.50		<0.10	< 0.10	<0.10
D4@5'	02/23/09	< 0.10	<1.0	<0.50	< 0.50	< 0.10	<0.10	< 0.10	0.36
D5@51	02/23/09	0.15	<1.0	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10
D6@5'	02/23/09	0.14	<1.0	<0.50	< 0.50	<0.10	< 0.10	< 0.10	<0.10
E1@5' (PV 1)	02/23/09	< 0.10	<1.0	< 0.50	<0.50		<0.10	< 0.10	0.15
E1@5' (PV 3)	02/23/09	<0.10	<1.0	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	0.16
E1@5' (PV 7)	02/23/09	<0.10	<1.0	<0.50	<0.50		< 0.10	< 0.10	0.14
E2@5'	02/23/09	0.12	<1.0	<0.50	<0.50	< 0.10	< 0.10	< 0.10	< 0.10
E3@5'	02/23/09	<0.10	<1.0		< 0.50		< 0.10	< 0.10	< 0.10
E4@5'	02/23/09	0.18	<1.0		< 0.50		<0.10	< 0.10	< 0.10
E5@5'	02/23/09	0.13	<1.0	<0.50	<0.50	< 0.10	<0.10	<0.10	<0.10
No. Sample	s Analyzed	28	28	28			28	28	28
No.	Detections	1	C	0	Ö	0	0	0	15
Percentage 1	Detections	29	C	0	0	0	0	0	54
	Maximum	0.26	<1.0	<0.50	<0.50	<0.10	<0.10	<0.10	0.47

XL:1576:SOILGASDATA-8260B 3 of 4

TABLE 8
SOIL GAS TESTING RESULTS - VOCs EPA METHOD 8260B
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670
(concentrations in micrograms per liter - ug/L)

Sample ID	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Chloroform	CTC	TCE	PCE
SOIL SAMPI	LES COLL	ECTED FI	ROM 15 F	EET BGS	·····				
A4@15'	02/23/09	0.15	<1.0	< 0.50	<0.50	< 0.10	< 0.10	< 0.10	2.9
A4@15' D	02/23/09	0.10	<1.0	< 0.50	<0.50	< 0.10	< 0.10	< 0.10	2.4
A5@15'	02/23/09	< 0.10	<1.0	< 0.50	< 0.50	< 0.10	<0.10	< 0.10	2.4
B1@15'	02/24/09	< 0.10	<1.0	< 0.50	< 0.50	< 0.10	< 0.10	0.15	6.6
B2@15'	02/24/09	< 0.10	<1.0	< 0.50	<0.50	< 0.10	<0.10	0.36	12
B3@15'	02/24/09	< 0.10	<1.0	<0.50	<0.50	< 0.10	<0.10	0,59	14
B4@15'	02/23/09	0.16	<1.0	< 0.50	< 0.50	<0.10	< 0.10	0.59	9.4
B5@15'	02/24/09	< 0.10	<1.0	< 0.50	<0.50	< 0.10	< 0.10	0.56	9.3
B6@15'	02/24/09	< 0.10	<1.0	<0.50	< 0.50	< 0.10	<0.10	0.41	5.4
C1@15'	02/24/09	< 0.10	<1.0	< 0.50	< 0.50	< 0.10	<0.10	0.12	7.9
C2@15'	02/24/09	< 0.10	<1,0	< 0.50	<0.50	<0.10	< 0.10	0.35	5,8
C3@15'	02/24/09	<0.10	<1.0	< 0.50	< 0.50	< 0.10	< 0.10	2.3	16
C4@15'	02/23/09	< 0.10	<1.0	<0.50	< 0.50	< 0.10	<0.10	0.75	4.6
C4@15' D	02/23/09	< 0.10	<1.0	<0.50	< 0.50	< 0.10	< 0.10	0.75	4.7
C5@15'	02/23/09	< 0.10	<1.0	<0.50	< 0.50	< 0.10	< 0.10	0.49	4.1
C6@15'	02/23/09	< 0.10	<1.0	< 0.50	< 0.50	< 0.10	< 0.10	0.34	2.2
D1@15'	02/23/09	<0.10	<1.0	<0.50	< 0.50	< 0.10	< 0.10	< 0.10	2.4
D2@15'	02/23/09	0.11	<1.0	< 0.50	<0.50	< 0.10	< 0.10	0.36	6.1
D3@15'	02/23/09	< 0.10	<1.0	<0.50	< 0.50	< 0.10	< 0.10	3.7	9,9
D4@15'	02/23/09	0.12	<1.0	< 0.50	< 0.50	< 0.10	0.12	3.1	17
D5@15'	02/23/09	0.13	<1.0	<0.50	< 0.50	< 0.10	0.17	0.67	4.0
D6@15'	02/23/09	0.12	<1.0	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	0.50
E1@15'	02/23/09	0.11	<1.0	<0.50	< 0.50	< 0.10	< 0.10	< 0.10	6.8
E2@15'	02/23/09	< 0.10	<1.0	<0.50	< 0.50	< 0.10	< 0.10	0.16	6.0
E3@15'	02/23/09	< 0.10	<1.0	<0.50	< 0.50	< 0.10	< 0.10	< 0.10	0.88
E4@15'	02/23/09	< 0.10	1.0	0.65	3.22	0.15	0.12	1.7	5.8
E5@15'	02/23/09	0.10	<1.0	<0.50	< 0.50	0.13	<0.10	0.45	0.8
No. Sample	No. Samples Analyzed		27	27	27	27	27	27	27
No. Detections				1	i		3		27
Percentage Detections		33		4	4	7	11	74	100
	Maximum	0.16	1.0	0.65	3.22	0.15	0.17	3.7	17

XL:1576:SOILGASDATA-8260B 4 of 4

TABLE 9
SOIL GAS TESTING RESULTS - VOCs EPA METHOD TO-15
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670
(concentrations in micrograms per liter - ug/L)

Chemical	E3@5'	D6@15'	Trip Blank
Propene	0.230	0.021	< 0.010
Trichlorofluoromethane	< 0.005	0.011	< 0.005
Acetone	0.32	0.550	< 0.020
1,1-Dichloroethene	< 0.005	0.0059	< 0.005
Carbon Disulfide	0.036	0.001	< 0.005
1,1-Dichloroethane	< 0.005	0.0058	< 0.005
2-Butanone (MEK)	0.023	0.0091	< 0.005
Chloroform	< 0.005	0.024	< 0.005
Benzene	0.0061	0.0058	< 0.005
Carbon Tetrachloride	< 0.005	0.037	< 0.005
TCE	0.016	0,054	< 0.005
Toluene	0.057	0.051	< 0.005
PCE	0.140	0.240	< 0.005
Chlorobenzene	0.009	< 0.005	< 0.005
Ethylbenzene	0.015	0.011	< 0.005
Xylenes	0.077	0.063	< 0.005
1,2,4-Trimethylbenzene	0.017	0.0094	< 0.005
1,3,5-Trimethylbenzene	0.0058	<0.005	< 0.005

Only those volatile organic compounds detected are listed

XL:1576:SOILGASDATA-TO15 1 of 1

< = Not detected at laboratory reporting limit listed

TABLE 10
SUMMARY OF VOCs IN GROUND WATER BENEATH PILOT CHEMICAL AND PHIBRO-TECH, INC. SITES (concentrations in micrograms per liter - ug/L)

Well	Date	Chloroform	CTC	1,1-DCA	1,2-DCA	1,1-DCE	TCE	PCE	Benzene	Toluene	Ethylbenzene	Xylenes
Pilot Chemic	Pilot Chemical Company											
MW-1	Apr-08	209J	ND	ND	387	ND	ND	ND	ND	34,600	11,700	67,000
MW-2	Apr-08	450	ND	ND	3,160	ND	ND	ND	ND	62,500	9,000	44,900
MW-3	Apr-08	89.9	ND	ND	46.5J	ND	ND	ND	ND	4,280	2,780	8,240
MW-4	Apr-08	ND	ND	ND	1.90	ND	1.40	0.57	ND	ND	ND	ND
MW-5	Apr-08	25.5	36.5	ND	ND	0.288J	1.00	7.00	ND	ND	ND	ND
MW-6	Арг-08	15.9	14.1	ND	3.51	0,216J	1.23	3.67	ND	ND	ND	ND
MW-7	Apr-08	1.70	0.43J	ND	16.6	ND	1.40	0.90	ND	ND	ND	ND
MW-8	Apr-08	9.90	ND	ND	ND	ND	ND	1.40	ND	ND	ND	3.30
MW-9	Apr-08	13.7	ND	67	9.6	4.8	167	3.00	ND	ND	ND	ND
MW-10	Apr-08	19.5J	ND	ND	2,590	4.8	ND	ND	243	ND	ND	604
MW-11	Apr-08	1.8	0.065J	0.104J	1.80	0.067J	2.60	18.1	ND	ND	ND	ND
MA	XIMUM	450	36.5	67	3,160	4.8	167	18.1	243	62,500	11,700	67,000
Phibro-Tech	, Inc.				· .							
MW-01D	Jul-08	ND	ND	ND	ND	2.40	34	ND	ND	ND	ND	ND
MW-01S	Jul-08	ND	ND	ND.	ND	ND	6.70	4.50	ND	ND	ND	ND
MW-03	Ju1-08	34	16	35	62	26	180	ND	ND	ND	730	88
MW-04	Jul-08	29	5.5	150	180		310	ND	ND	ND	ND	ND
MW-04A	Jul-08	5.50	ND	110	ND	9.70	68	1.90	ND	ND	ND	ND
MW-06B	Jul-08	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-06D	Jul-08	ND	ND	ND	ND	1.40	28	13	ND	ND	ND	ND
MW-07	Jul-08	ND	ND	6.60	0.53	1.10	10	2.60	ND	ND	ND	ND
MW-09	Jul-08	35	ND	78	21	24	110	6.50	ND	ND	ND	ND
MW-11	Jul-08	ND	ND	41	220	14	220	ND	ND	ND	500	ND
MW-14S	Jul-08	30	4.00	120	65	65	640	ND	ND	ND	ND	ND
MW-15D	Jul-08	ND	ND	ND	ND	ND	ND	1.60	ND	ND	ND	ND
MW-15S	Jul-08	5.40	ND	18	110	5.90	73	2.30	ND	ND	ND	ND
MW-16	Jul-08	ND	ND	88	3.60	12.00	26	2.40	ND	ND	ND	ND
	XIMUM	35	16	150	220	65	640	13	ND	ND	730	88

ND = Not detected

1,1-DCE = 1,1-Dichloroethene

CTC = Carbon tetrachloride

TCE = Trichloroethene

1,1-DCA = 1,1-Dichloroethane

PCE = Tetrachloroethene

1,2-DCA = 1,2-Dichloroethane

XL;1576:OFPSITE-GW 1 of 1

TABLE 11
TOXICITY CRITERIA - HUMAN HEALTH SCREENING EVALUATION
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

	Chronic	Inhalation
	Inhalation	
		Cancer
	Reference Dose	Slope Factor
Chemicals of Concern	mg/m ³	$(ug/m^3)^{-1}$
Benzene	3.0E-02	2.9E-05
Toluene	3.0E-01	NC
Ethylbenzene	1.0E+00	2.5E-03
Xylenes	1.0E-01	NC
1,3,5-Trimethylbenzene (1,3,5TMB)	6.0E-03	NC
1,2,4-Trimethylbenzene (1,2,4TMB)	6.0E-03	NC
Ргорепе	3.0E+00	NC
Trichlorofluoromethane	7.0E-01	NC
Acetone	3.5E-01	NC
Carbon Disulfide	8.0E-01	NC
2-Butanone (MEK)	4.9E+00	NC
1,1-Dichloroethane (1,1-DCA)	5.0E-01	1.6E-06
1,1-Dichloroethene (1,1-DCE)	7.0E-02	NC
Chlorobenzene	1.0E+00	NC
Chloroform	3.0E-01	5.3E-06
Carbon Tetrachloride	4.0E-02	4.2E-05
Trichloroethlene (TCE)	6.0E-01	2.0E-06
Tetrachloroethene (PCE)	3.5E-02	5.9E-06

All values from DTSC's Screening Model Lookup Tables except Propene and Inhalation Slope Factor for Ethylbenzene from OEHHA Toxicity Database NC = Not a carcinogen

XL:1576:TABLE_TOX 1 of 1

TABLE 12
VAPOR INTRUSION HEALTH RISK EVALUATION USING SOIL GAS DATA
(MAXIMUM CONCENTRATIONS DETECTED) FROM 5 FEET
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

	Maximum Concentration				
	Detected	Residentia	l Land Use	Commercia	al Land Use
Chemical	(ug/m ³)	Cancer Risk	Hazard Quotient	Cancer Risk	Hazard Quotient
Benzene	260	2.9E-06	7.3E-03	1.7E-06	4.6E-03
Toluene	57	NC .	1.7E-04	NC	9.9E-05
Ethylbenzene	15	1.3E-08	1.2E-05	7.6E-09	7.1E-06
Xylenes	77	NC	6.8E-04	NC	4.0E-04
1,3,5-Trimethylbenzene (1,3,5-TMB)	5.8	NC	6.7E-04	NC :	4.0E-04
1,2,4-Trimethylbenzene (1,2,4-TMB)	17	NC	2.0E-03	NC	1.3E-03
Propene	230	Not in D)atabase	Not in E	Database
Acetone	320	NC	1.1E-03	NC	6.6E-04
Carbon Disulfide	36	NC	5.5E-05	NC	3.0E-05
2-Butanone (MEK)	23	NC	3.9E-06	NC	2.3E-06
Chlorobenzene	9.0	NC	7.0E-06	NC	4.2E-06
Trichloroethlene (TCE)	16	1.1E-08	2.2E-05	6.7E-09	1.3E-05
Tetrachloroethene (PCE)	470	9.2E-07	2.7E-03	5.5E-07	6.2E-03
	Total Value	3.8E-06	1.5E-02	2.3E-06	1.4E-02

NC= Not a Carcinogen

TABLE 13
VAPOR INTRUSION HEALTH RISK EVALUATION USING SOIL GAS DATA (MAXIMUM CONCENTRATIONS DETECTED) FROM 15 FEET 11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

	Maximum Concentration					
	Detected	Residentia	I Land Use	Commercial Land Use		
Chemical	(ug/m³)	Cancer Risk	Hazard Quotient	Cancer Risk	Hazard Quotient	
Benzene	160	7.4E-07	2.0E-03	4.4E-07	1.2E-03	
Toluene	1,000	NC	1.2E-03	NC	7.3E-04	
Ethylbenzene	650	2.3E-07	2.1E-04	1.3E-07	1.3E-04	
Xylenes	3,220	NC	1.2E-02	NC	7.0E-03	
1,2,4-Trimethylbenzene (1,2,4-TMB)	9.4	NC	4.2E-04	NC	2.5E-04	
Propene	21	Not in I	Database	Not in Database		
Trichlorofluoromethane	11	NC	5.8E-06	NC	3.4E-06	
Acetone	550	NC	7.8E-04	NC	4.6E-04	
Carbon Disulfide	1.0	NC	6.1E-07	NC	3.6E-07	
2-Butanone (MEK)	9.1	NC	3.8E-07	NC	6.3E-07	
1,1-Dichloroethane (1,1-DCA)	5.8	1.3E-09	3.7E-06	7.6E-10	2.2E-06	
1,1-Dichloroethene (1,1-DCE)	5.9	NC	3.2E-05	NC	1.9E-05	
Chloroform	150	NC	2.1E-04	NC	1.3E-04	
Carbon Tetrachloride	170	1.0E-06	1.4E-03	6.1E-07	8.5E-04	
Trichloroethlene (TCE)	3,700	1.1E-06	2.1E-03	6.4E-07	1.2E-03	
Tetrachloroethene (PCE)	17,000	1.3E-05	1.5E-01	8.0E-06	9.0E-02	
	Total Value	1.6E-05	1.7E-01	9.8E-06	1.0E-01	

NC = Not a Carcinogen

TABLE 14
VAPOR INTRUSION HEALTH RISK EVALUATION USING SOIL GAS DATA
(95% UCL FOR PCE AND MAXIMUM CONCENTRATIONS DETECTED) FROM 15 FEET
11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

	Maximum Concentration					
	Detected	Residentia	l Land Use	Commercial Land Use		
Chemical/Depth	(ug/m³)	Cancer Risk	Hazard Quotient	Cancer Risk	Hazard Quotient	
Benzene	160	7.4E-07	2.0E-03	4.4E-07	1.2E-03	
Toluene	1,000	NC	1.2E-03	NC	7,3E-04	
Ethylbenzene	650	2.3E-07	2.1E-04	1.3E-07	1.3E-04	
Xylenes	3,220	NC	1.2E-02	NC	7.0E-03	
1,2,4-Trimethylbenzene (1,2,4-TMB)	9.4	NC	4.2E-04	NC	2.5E-04	
Propene	21	Not in I	Database	Not in Database		
Trichlorofluoromethane	11	NC	5.8E-06	NC	3.4E-06	
Acetone	550	NC	7.8E-04	NC	4.6E-04	
Carbon Disulfide	1.0	NC	6.1E-07	NC	3.6E-07	
2-Butanone (MEK)	9.1	NC	3.8E-07	NC	6.3E-07	
1,1-Dichloroethane (1,1-DCA)	5.8	1.3E-09	3.7E-06	7.6E-10	2.2E-06	
1,1-Dichloroethene (1,1-DCE)	5.9	NC	3.2E-05	NC	1.9E-05	
Chloroform	150	NC	2.1E-04	NC	1.3E-04	
Carbon Tetrachloride	170	1.0E-06	1.4E-03	6.1E-07	8.5E-04	
Trichloroethlene (TCE)	3,700	1.1E-06	2.1E-03	6.4E-07	1.2E-03	
Tetrachloroethene (PCE) (1)	8,123	6.4E-06	7.2E-02	3.8E-06	4.3E-02	
	Total Value	9.5E-06	9.2E-02	5.6E-06	5.5E-02	

NC = Not a Carcinogen

(1) = 95% UCL Concentration

FIGURES

Project No. 1576

Figure 1

SITE PLAN 11630 - 11700 Burke Street Santa Fe Springs, CA 90670

HISTORICAL MEDIA SAMPLING LOCATIONS, EXCLUDING SOIL SAMPLES COLLECTED IN FEBRUARY 2009 (SEE FIGURE 5) AND SOIL GAS SAMPLES (SEE FIGURE 6) 11630 - 11700 Burke Street Santa Fe Springs, CA 90670

BEA REMEDIAL EXCAVATIONS - AUGUST 2006 11630 - 11700 Burke Street Santa Fe Springs, CA 90670

ENVIRONMENTAL AUDIT INC.

AERIAL VICINITY MAP 11630 to 11700 Burke Street Santa Fe Springs, CA 90609

CENTRAL BASIN GROUNDWATER PCE PLUME

N

SITE CONCEPTUAL MODEL

11630 - 11700 Burke Street, Santa Fe Springs, CA 90670

- PATHWAY IS CONSIDERED TO BE POTENTIALLLY COMPLETE
- PATHWAY IS CONSIDERED TO BE INCOMPLETE

FIGURE 9

11630 - 11700 Burke Street Santa Fe Springs, CA 90670 12,330 0.51 Residual Hydrocarbon Left in Place That Excelled Los Angeles RWQCB Soil Screening Levels

Excavated Soil

Confirmation Soil Sample

CROSS SECTION LOCATION MAP 11630 - 11700 Burke Street Santa Fe Springs, CA 90670

Environmental Audit, Inc.

50

Percent of Hydrocarbons within Individual Carbon Chain Ranges for Sample E-9@15-16'

APPENDIX A

Boring Logs

	Patsouras !				PROJEC'		576 DRILL HOLE: SAMPLE-4A
	ATION:				et, Santa F	e Springs,	
	G COMPA	_		·····	II C.		TYPE OF RIG; CME-85
	G METHO				llow Sten		HOLE DIAMETER: 8"
START D	EIGHT/HE	12/7/20		140) # @ 30"		REFERENCE OR DATUM: Surface COMPLETION DATE: 12/7/2009
STAKLD	Ald:	12/1/20	109 108			BOOK GRAND	DESCRIPTION DESCRIPTION
DEPTH IN FEET	GRAPHIC BORING LOG	SAMPLE SIZE AND LOCATION	BLOW COUNTS PER 0.5 FT	TIME	SOIL VAPOR READING, PPM	UNIFIED SOIL CLASSIFICATION SYSTEM	DESCRIPTION
0		$\vdash \vdash$				SM	
5		Y	8,9,9	7:50	1.6		4-5.5 VERY SILTY SAND, rust, fine sand, moist, no odor
10		¥ •	9,10,12	8:00	0.0	:	9-10.5 VERY SILTY SAND. rust, fine sand, moist, no odor
15		¥	8,11,11	8:05	0.0	SP	14-15.5' SAND, tan, fine sand. moist, no odor
20			12,13,15	8:10	1.9		19-20.5' SAND, tan, fine sand, moist, no odor
25		¥	10,12,13	8:15	1.4		24-25.5' SAND, tan, fine sand, rare fine gravel, moist, no odor
30		¥ •	9,12,12	8:20	3.1		29-30.5' SLIGHTLY SANDY SILT, tan, very fine sand, moist, no odor
35			8,9,11	8:25	0.0	SM	34-35.5' SILTY SAND, tan, very fine sand, moist, no odor
NOTES:							
				_			

LOGGED BY: BHM DATE: 12/7/2009 APPROVED BY: BHM RG#: 5649

CLIENT: Patso					PROJEC		DRILL HOLE: SAMPLE-4A				
	SITE LOCATION: 11630-11700 Burke Street, Santa Fe Springs, CA										
DRILLING CO			Cascade I				TYPE OF RIG: CME-85				
DRILLING ME					llow Sten	n Auger	HOLE DIAMETER: 8"				
DRIVE WEIGH				': <u>140</u>	# @ 30"		REFERENCE OR DATUM: Surface				
START DATE:	12	/7/20	009				COMPLETION DATE: 12/7/2009				
						Z	DESCRIPTION				
	7 Pro 121	AND LOCATION	BLOW COUNTS PER 0.5 FT		SGIL VAPOR READING, PPM	UNIFIED SOIL CLASSIFICATION SYSTEM					
DEPTH IN FEET GRAPHIC	BORING LOG	ΔŢ	5		8 2	<u>5</u> K					
Z L	T L	Ø	용교		Ğ Ğ	D'S FIC					
	Ž ē	Ž	3 0 €	ш	> 5	SS					
DEPTH IN	8 3	Z	일품	TIME	E A	L'A YS					
(A)	⊕ ∨		20.50	9-20			20.40 FLOTT TV CAND				
40		M	28,50	8:30	0.9		39-40.5' SILTY SAND, tan, very fine sand, moist, no odor				
	********	\Box				CL					
		Н				CL					
		$\overline{}$	9,12,13	8:35	1.6		44-45.5' VERY SILTY CLAY, brown, moist, no odor				
45		À	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.20	2.0		The value of the state of the s				
		Н									
		\Box				ML					
]								
50		M	12,13,16	8:40	1.9		49-50.5' SLIGHTLY SANDY SILT, rust, fine sand,				
							moist, no odor				
						CL					
	•	\vdash									
	,	igg	10 14 16	5.45	٦.		EASE STOLICHTLY CANDY OF TV CLAY and E				
55	:: *	M	12,14,16	5:45	2.8		54-55.5' SLIGHTLY SANDY SILTY CLAY, rust, fine sand, moist, no odor				
		F					inoist, no odor				
		\vdash									
		Н				SP					
		W	14,15,18	8:50	1.8		59-60.5' SAND, tan, medium to fine sand, moist, no odor				
60 —											
65 —		M	9,13,15	8:55	1.6		64-65.5' SAND. tan, medium to fine sand, moist, no odor				
		-									
		\vdash	1 1								
		V	8,9,10	9:00	2.2		69-70.5' SAND, tan, fine sand, moist, no odor				
70	24,411111		0,5,10	3,00							
			1 1								
			1								
]								
75			.								
· · · —		_									
—		<u> </u>									
		-									
NOTES:							<u> </u>				
NOTES.											
L											

Note: This boring log represents conditions only at time and location indicated.

Subsurface conditions may differ at other locations and times.

LOGGED BY: BHM DATE: 12/7/2009 APPROVED BY: BHM RG#: 5649

CLIENT:						T NO:1	
SITE LOC					t, Santa F	e Springs,	
DRILLING							TYPE OF RIG: CME-85
DRILLING					llow Sten		HOLE DIAMETER: 8"
DRIVE W				P: <u>140</u>	#@30"		REFERENCE OR DATUM: Surface
START D	ATE:	12/8/20	009	Sistema si sa sa sa sa sa sa sa sa sa sa sa sa sa	******	BARRAGO CONTRA	COMPLETION DATE: 12/8/2009
DEPTH IN PEBT	GRAPHIC BORING LOG	SAMPLE SIZE AND LOCATION	BLOW COUNTS PER 0.5 FT	TIME	SOIL VAPOR READING, PPM	UNIFIED SOIL CLASSIFICATION SYSTEM	DESCRIPTION
	O A	\$\$. 4 .		(100 0 +1000		ML	
5			7,7,8	10:00	1.1	ML	4-5.5' VERY SANDY CLAYEY SILT, rust, fine sand, moist, no odor
10			6,7,9	10:05	0.2	SM	9-10.5' SILTY SAND, rust, fine sand. moist, no odor
15		Y	6,7,8	10:08	0.0	SP	14-15.5' SAND, tan, fine sand, moist, no odor
20		X	6,6,7	10:10	0.0		19-20.5' SAND, tan, fine sand, moist, no odor
25		X	7,8,9	10:15	0.0		24-25.5' SLIGHTLY SILTY SAND. tan, fine sand, moist, no odor
30		X	6,7,8	10:17	0.0		29-30.5' SAND, tan, fine sand, moist, no odor
35		X	8,9,11	10:20	0.0		34-35.5' SAND, tan, fine sand, moist, no odor
	00	1 -	1			SW	1
NOTES:							
						-	
				LOG	GED BY:	BHM	DATE: 12/8/2009 APPROVED BY: BHM RG#: 5649

	CLIENT: Patsouras Property PROJECT NO: 1576 DRILL HOLE: B-2								
SITE LOCATION: 11630-11700 Burke Street, Santa Fe Springs, CA DRILLING COMPANY: Cascade Drilling TYPE OF RIG: CME-85									
			Cascade I				TYPE OF RIG: CME-85		
DRILLING		-			llow Sten		HOLE DIAMETER: 8"		
DRIVE W				P: <u>140</u>)#@30"		REFERENCE OR DATUM: Surface		
START D	ATE:	12/8/2	009		**************************************	********	COMPLETION DATE: 12/8/2009		
i i i i i i i i i i i i i i i i i i i		Z	S			UNIFIED SOIL CLASSIFICATION SYSTEM	DESCRIPTION		
DEPTH IN FEET	Ä	SAMPLE SIZE AND LOCATION	BLOW COUNT PER 0 5 FT		SOIL VAPOR READING, PPM	# £			
Ż	GRAPHIC BORING LOG	& A	ે દ		2 G	UNIFIED SOIL CLASSIFICAT SYSTEM			
Ξ.	GRAPHIC	7 3	BLOW CO		ŞΖ	E SE			
	K41	₹ 6	ÓΥ	TIME		AS ST			
ā	5 %	SA			SC	CI CI SY			
40	8		9,10,12	10;22	0.0		39-40.5' GRAVELLY SAND, tan, coarse to fine sand,		
· —	\sim						fine gravel, moist, no odor		
		ΙН		ļ		OT.			
			8,10,12	10:25	0.0	CL	AA AS SICI ICHTI V CANIDV ON TRACIANA		
45		Ă	0,10,12	10.23	0.0		44-45.5' SLIGHTLY SANDY SILTY CLAY, tan, fine sand, moist, no odor		
		\Box					inic saird, moist, no odo;		
						SM			
50 ——		M	10,12,14	10:30	1.2		49-50.5' VERY SILTY SAND, tan, very fine sand,		
							moist, no odor		
		╽┝╾┤							
		$\vdash\vdash$							
			8,9,11	10:33	0.0		54-55.5' VERY SILTY SAND, tan, very fine sand,		
55 —			,,,,,,,	10.55	0,0		moist, no odor		
						SP			
60		M	6,7,8	10:35	0.0		59-60.5' SAND, tan, coarse to fine sand, moist,		
						SM	no odor		
		ΙН				2141			
		ΙН							
65		Y	7,9,10	10:40	0.0		64-65.5' VERY SILTY SAND, tan, fine sand, moist,		
03							no odor		
		ΙН				SP			
		$\mid \mid \mid \mid \mid$					İ		
		7	6,6,7	10:45	0.0		69-70.5' SAND, tan, fine sand, moist, no odor		
70 —		Ä	0,0,7	10.73	0.0		or-10.2 orato, can, nue sand, moist, no odor		
75 ——		ΙЩ							
NOTES:					<u> </u>				
				LOGO	GED BY:	ВНМ	DATE: 12/8/2009 APPROVED BY: BHM RG#: 5649		

Subsurface conditions may differ at other locations and times.

CLIENT:	Patsouras	Propert	y		PROJECT	ΓNO: 1	576 DRILL HOLE: B-3
	ATION:			rke Stree	t, Santa F	e Springs,	CA
DRILLING	G COMPA	NY:	Cascade I	Prilling			TYPE OF RIG: CME-85
DRILLING	G METHO	D/EQU	IPMENT:	Ho	llow Sten	ı Auger	HOLE DIAMETER: 8"
DRIVE W	EIGHT/HI	EIGHT	OF DROP	r: 140	#@30"		REFERENCE OR DATUM: Surface
START D	ATE:	12/8/20	009				COMPLETION DATE: 12/8/2009
DEPTH IN FEET	GRAPHIC BORING LOG	SAMPLE SIZE AND LOCATION	BLOW COUNTS PER 05 FT	TIME	SOIL VAPOR READING, PPM	UNIFIED SOIL CLASSIFICATION SYSTEM	DESCRIPTION
						CL	
5		×	7,9,10	12:40	1.3	SM	4-5.5 SLIGHTLY SANDY SILTY CLAY, rust, very fine sand, moist, no odor
10			6,7,10	12:45	0.9	SP	9-10.5' VERY SILTY SAND, tan, fine sand, moist, no odor
15		×	7,9,12	12:47	0.0		14-15.5' SAND, tan, fine sand, moist, no odor
20		-	7,8,9,	12:50	0.0		19-20.5' SAND, tan, medium to fine sand, moist, no odor
25 —		X	6,8,10	12:53			24-25.5' NO RECOVERY
30		X	6,7,9	12:57	0.0		29-30.5' SAND, tan, fine sand, moist, no odor
35		X	8,10,13	13:00	0.4	SM	34-35.5' VERY SILTY SAND, tan, medium to fine sand, moist, no odor
	00	<u>:1</u>		L		SW	
NOTES:							

LOGGED BY: BHM DATE: 12/8/2009 APPROVED BY: BHM RG#: 5649

CLIENT:	Patsouras !	Propert	у		PROJECT	Γ NO: 1	576 DRILL HOLE: B-3		
SITE LOCATION: 11630-11700 Burke Street, Santa Fe Springs, CA									
DRILLING	G COMPA	NY:	Cascade I	Orilling			TYPE OF RIG: CME-85		
DRILLING					llow Sten	ı Auger	HOLE DIAMETER: 8"		
DRIVE W	EIGHT/HI	EIGHT	OF DROI	P: 140	#@30"		REFERENCE OR DATUM: Surface		
START D	ATE:	12/8/20	009				COMPLETION DATE: 12/8/2009		
						Z	DESCRIPTION		
		SAMPLE SIZE AND LOCATION	S		SOIL VAPOR READING, PPM	UNIFIED SOIL CLASSIFICATIOI SYSTEM			
	Ö	Z	5		8 5	ĭo ≮			
DEPTH IN FEET	GRAPHIC BORING LOG	SAMPLE SIZE AND LOCATION	BLOW COUNTS PER 0.5 FT		₽ 9	UNIFIED SOIL CLASSIFICAT SYSTEM			
臣	ZZ		3 €	CIL	> 5	SS E			
â	GRAPHIC BORING:1	₹Z	을 풉니	TDME	OII.	UNIFIED CLASSIF SYSTEM			
-	O 🚓	S) <				D 0 %	00 (0 5) CP (VIII V 0 1 2 T)		
40	0/		7,8,10	13:05	0.0		39-40.5' GRAVELLY SAND, rust to tan, coarse to fine		
	0						sand, medium to fine gravel, moist, no odor		
	\vee	ΙН							
	\sim	₩	9,10,12	13:10	0.0		44-45.5' GRAVELLY SAND, rust to tan, coarse to fine		
45	0	À	3,10,12	20110	: 0.0		sand, medium to fine gravel, moist, no odor		
						SP	, , , , , , , , , , , , , , , , , , , ,		
50 ——		M	8,9,11	13:12	0.0		49-50.5' SAND, tan, fine sand, moist, no odor		
~									
		\vdash							
<u> </u>		\vdash							
		V	6,7,9	13:15	0.3		54-55.5' SAND, tan, fine sand, moist, no odor		
55 ——		A	0,/,9	13.13	0.5		34-33.3 SAIND, tail, line sand, fliotst, no odor		
—						SM			
						2,12			
60		V	11,13,16	13:18	0.6		59-60.5' SILTY SAND, tan, very fine sand, moist, no odor		
00									
		╽┝				SP			
! <u> </u>						İ			
· —			10.12.12	13:20	١ , ,		CA CE SIGNED ton For and maint no also		
65		M	10,12,13	13;20	0.0		64-65.5' SAND, tan, fine sand, moist, no odor		
			}		i				
			1						
			1						
		V	12,14,14,	13:25	0.0		69-70.5' SAND, tan, fine sand, moist, no odor		
70 —				1					
]		j						
]]			1			
	_								
75	4								
	4		1						
—	-		1						
—	1	-	1						
NOTES:	1				<u></u>	L			
THO LES.									

LOGGED BY: BHM DATE: 12/8/2009 APPROVED BY: BHM RG#: 5649

CLIENT:					PROJEC		576 DRILL HOLE: B-7A
SITE LOC					t, Santa F	e Springs,	
DRILLING			Cascade l				TYPE OF RIG: CME-85
DRILLING		-			llow Sten		HOLE DIAMETER: 8"
DRIVE W				P: <u>140</u>	# @ 30"		REFERENCE OR DATUM: Surface
START D	ATE:	12/7/2	009				COMPLETION DATE: 12/7/2009
		7				Z	DESCRIPTION
DEPTH IN FEET		SAMPLE SIZE AND LOCATION	BLOW COUNTS PER 0.5 FT		SOIL VAPOR READING, PPM	UNIFIED SOIL CLASSIFICATION SYSTEM	
	GRAPHIC BORING LOG	A 72	5		S I	UNIFIED SOIL CLASSIFICATI SYSTEM	
Z	27	E S	BLOW CO PER 0.5 FT		₽ Ď	DS FIC	
五	艺艺		3 €	ш.	> 5	UNIETED CLASSIF SYSTEM	
a	₩ 6	₹ Z	2 8	TOME	EA		
	(O) (C)	ζ. ∢ .			×Ν		
0		ΙН				SM	
		ΙН					
		ΙН					i
		7	8,9,11	8:05	48.7		4-5.5 SILTY SANDY CLAY, gray, fine sand,
5 —		À	0,2,11	0.05	40.7		moist, faint odor
		ΙН					moise, idine out
	·	ΙН					
		ΙП					
10		Y	8,11,14	8:10	17.8		9-10.5' SILTY SAND, olive, fine sand, moist, faint odor
10							
						SP	
15 —		M	9,11,12	8:13	1.6		14-15.5' SAND, tan, fine sand, moist, no odor
		ΙН					
		$\vdash \vdash$					
			11,12,14	8:17	2.7		19-20.5' SAND, tan, fine sand, moist, no odor
20			11,12,14	0.17	4.7		19-20.5 SAND, tail, line saile, moist, no oder
				,			
						SM	
25 —		Y	7,9,11	8:20	4.3		24-25.5' SILTY SAND, tan, fine sand, moist, no odor
		Ц					
30 ——		M	9,13,15	8:24	0.0		29-30.5' SILTY SAND, tan, fine sand, moist, no odor
		\vdash					
		ΙН					
			13,14,17	8:30	0.0		34-35.5' SILTY SAND, tan, fine sand, moist, no odor
35 —			, - 1, 4 /	J.20	4,5		s. 2010 OLDZ : OTRAD, tan, time Sano, moist, no odor
						CL	
NOTES:							

Note: This boring log represents conditions only at time and location indicated. Subsurface conditions may differ at other locations and times.

LOGGED BY: BHM DATE: 12/7/2009 APPROVED BY: BHM RG#: 5649

CLIENT:					PROJEC		DRILL HOLE: B-7A		
SITE LOCATION: 11630-11700 Burke Street, Santa Fe Springs, CA DRILLING COMPANY: Cascade Drilling TYPE OF RIG: CME-85									
			Cascade D				TYPE OF RIG: CME-85		
DRILLING					llow Sten		HOLE DIAMETER: 8"		
DRIVE W				: <u>140</u>)#@30"		REFERENCE OR DATUM: Surface		
START D	ATE:	12/7/20)09	11-12-11-11-11-11	000000000000		COMPLETION DATE: 12/7/2009		
		2				Z	DESCRIPTION		
DEPTH IN FEET	τ , 	SAMPLE SIZE AND LOCATION	BLOW COUNTS PER 0.5 FT		SOIL VAPOR READING, PPM	UNIFIED SOIL CLASSIFICATION SYSTEM			
L	Ğ	A TA	5.			S S			
. Č		48	8 4		N A	D IA			
-	53	윤금	≱ o	<u> </u>	<u> </u>	E SS			
į.	GRAPHIC BORING LO	SAMPLE SIZE AND LOCATI	BLOW COI PER 0.5 FT	TIME	ō à	UNIFIED SOIL CLASSIFICAT SYSTEM			
		W	6,6,8	8:34	0.0	147, Q. Q.	39-40.5' SILTY CLAY, tan, moist, no odor		
40			0,0,0	0.54	0.0		55 10.5 Bill's Bill's transfer of the basis		
		$ $ $ $							
			- 1						
4.5		Y	15,16,21	8:39	1.9		44-45.5' SLIGHTLY SANDY SILTY CLAY, rust,		
45							very fine sand, moist, no odor		
			1 4 1 7 00	0.44		SM	AO SO SI SIVISTIA CANITO AND SI AND A SINITA		
50		M	14,17,22	8:44	0.0		49-50.5' SILTY SAND, tan, fine sand, moist, no odor		
		H	ļ						
		H							
		lacksquare	15,17,22	8:40	2,2		54-55.5' SILTY SAND, brown, fine sand, moist, no odor		
55		À	,,						
60		M	14,16,22	8:55	3.4		59-60.5' SILTY SAND, brown, fine sand, moist, no odor		
	ere ee	1				SP	-		
					1	3r			
		V	8,12,16	9:00	2.3		64-65.5' SAND, tan, fine sand, moist, no odor		
65 —			0,12,10	2100	2.5		or one or every tree date, and the order		
			1						
]						
]						
70			16,17,22	9:03	1.1		69-70.5' SAND, tan, medium to fine sand, moist, no odor		
	1					1			
	-	_	1						
75	-		1						
l —	1		1						
75	1		1						
—	1		1						
-	1		1	l					
	1								
NOTES:									

LOGGED BY: BHM DATE: 12/7/2009 APPROVED BY: BHM RG#: 5649

CLIENT:					PROJEC	T NO:	DRILL HOLE: C-3
SITE LOC					et, Santa F	e Springs,	CA
DRILLING			Cascade 1				TYPE OF RIG: CME-85
DRILLING					llow Sten		HOLE DIAMETER: 8"
DRIVE W				P: <u>140</u>	# @ 30"		REFERENCE OR DATUM: Surface
START D	ATE:	12/8/2	009				COMPLETION DATE: 12/8/2009
DEPTH IN FEET	GRAPHIC Boring log	SAMPLE SIZE AND LOCATION	BLOW COUNTS PER 0.5 FT	TIME	SOIL VAPOR READING, PPM	UNIFIED SOIL CLASSIFICATION SYSTEM	DESCRIPTION
0 —			· ·			ML	
5		×	6,7,8	7:50	1.2	SM	4-5.5 VERY SANDY SILT, rust, fine sand moist, no odor
10		X	6,8,10	7:53	0,0		9-10.5' SILTY SAND, rust, fine sand, moist, no odor
15			9,12,13	7:55	0.0	SP	14-15.5' SAND, tan, fine sand, moist, no odor
20		X	6,8,9	7:58	0.0	ML	19-20.5' SAND, tan, fine sand, moist, no odor
25		X	9,10,12	8:00	0.0	SP	24-25.5' SLIGHTLY SANDY SILT, olive, very fine sand, moist, no odor
30		▼	6,7,9	8:02	0.3		29-30.5' SILTY SAND, tan, medium to fine sand, moist, no odor
35		×	6,8,12	8:05	0.7		34-35.5' SAND, tan, fine sand, moist, no odor
						CL	
NOTES:							

Note: This boxing log represents conditions only at time and location indicated. Subsurface conditions may differ at other locations and times.

LOGGED BY: BHM DATE: 12/8/2009 APPROVED BY: BHM RG#: 5649

CLIENT: Patsouras				PROJECT		576 DRILL HOLE: C-3
SITE LOCATION:				t, Santa F	e Springs,	
DRILLING COMPA	-	Cascade I				TYPE OF RIG: CME-85
DRILLING METHO	-			llow Sten	n Auger	HOLE DIAMETER: 8"
DRIVE WEIGHT/HI			P: <u>140</u>	# @ 30"		REFERENCE OR DATUM: Surface
START DATE:	12/8/20)09	********			COMPLETION DATE: 12/8/2009
	7				Z	DESCRIPTION
DEPTH IN FEET GRAPHIC BORING LOG	SAMPLE SIZE AND LOCATION	BLOW COUNTS PER 0.5 FT		SOIL VAPOR READING, PPM	UNIFIED SOIL CLASSIFICATION SYSTEM	
	SIZE	5.		5 -	UNIFIED SOIL CLASSIFICAT SYSTEM	
	필정	8 7		₹ S	Q II X	
	즐거	≩ 0	뵬		FIFE SSS	
DEPTH IN GRAPHIC BORING	SAMPLE AND LOC	BLOW CO PER 0.5 FI	TIME	Ö H	UNIFIED CLASSIF SYSTEM	
	V.	6,8,9	8:07	0.0	0 . 0 . 0	39-40.5' SILTY CLAY, brown, minor fine sand, moist
40 —		0,0,5	0.07	0.0		no odor
0.0					sw	
45		6,9,11	8:10	0.0		44-45.5 GRAVELLY SAND, tan, coarse to fine
						sand, medium to fine gravel, moist, no odor
	∄				CITO.	
	! ⊢⊣	ļ			SP	
		9,10,12	8:15	0.0		49-50.5' SAND, tan, fine sand, moist, no odor
50 —		7,10,12	0.15	0.0		77-30.5 SAIVO, tail, line saile, moist, no odol
	H					
55 —		8,9,10	8:17	0.0		54-55.5' SAND, tan, fine sand, moist, no odor
	1 H					
	H					
		7,9,11	8:20	0.9		59-60.5' SAND, tan, fine sand, moist, no odor
60 —		.,,,,,,	0.20	0.5		os octo ora as, and ound, morse, no out
65 —		8,10,12	8:25	1.3	1	64-65.5' SAND, tan, fine sand, moist, no odor
					SW	-
					SW	
		9,10,14	8:30	0.0		69-70.5' GRAVELLY SAND, tan, coarse to fine sand,
70		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.20	1		rare gravel, moist, no odor
						,,
75 ——						
	$ \mid$					
	1 -		l			
—			1			
NOTES:		I.			-	

LOGGED BY: BHM DATE: 12/8/2009 APPROVED BY: BHM RG#: 5649

CI IENET.	Datamana	D			PRATEC	TNO.	DRILL HOLE: D.4		
	CLIENT: Patsouras Property PROJECT NO: 1576 DRILL HOLE: D-4 SITE LOCATION: 11630-11700 Burke Street, Santa Fe Springs, CA								
DRILLING COMPANY: Cascade Drilling TYPE OF RIG: CME-85									
		_			11 04				
DRILLING		-			llow Ster		HOLE DIAMETER: 8"		
DRIVE WI				140	#@:30"		REFERENCE OR DATUM: Surface		
START DA	AIE:	12/7/20	JU9		i Britan na sana		COMPLETION DATE: 12/7/2009		
DEPTH IN FEET	GRAPHIC BORING LOG	SAMPLE SIZE AND LOCATION	BLOW COUNTS PER 0.5 FT	TIME	SOIL VAPOR READING, PPM	UNIFIED SOIL CLASSHICATION SYSTEM	DESCRIPTION		
0 —						ML			
5 =		X	7,8,9	12:55	0.0	SM	4-5.5 SANDY CLAYEY SILT, rust, fine sand moist, no odor		
10		X	8,10,12	13:07	0.0	GD.	9-10.5' VERY SILTY SAND, tan, fine sand, moist, no odor		
15		X	7,8,8,	13:10	0.0	SP	14-15.5' SAND, tan, fine sand, moist, no odor		
20 =		X	6,7,7,	13:13	0.0		19-20.5' SAND, tan, fine sand, moist, no odor		
25		X	8,9,11	13:15	0.0		24-25.5' SAND, tan, fine sand, moist, no odor		
30		X	6,8,8,	13:18	0.0		29-30.5' SAND, tan, fine sand, moist, no odor no odor		
35		X	7,9,10	13:20	0.0		34-35.5' SAND, tan, fine sand, moist, no odor		
NOTES:					_				

Note: This boring log represents conditions only at time and location indicated.

LOGGED BY: BHM DATE: 12/7/2009 APPROVED BY: BHM RG#: 5649

CLIENT:					PROJEC'		DRILL HOLE: D-4		
SITE LOCATION: 11630-11700 Burke Street, Santa Fe Springs, CA DRILLING COMPANY: Cascade Drilling TYPE OF RIG: CME-85									
							TYPE OF RIG: CME-85		
DRILLING					llow Sten		HOLE DIAMETER: 8"		
DRIVE W		EIGHT	OF DRO	P: 140	# @ 30"		REFERENCE OR DATUM: Surface		
START D	ATE:	12/7/20	009				COMPLETION DATE: 12/7/2009		
						Z	DESCRIPTION		
5		Ó	BLOW COUNTS PER 0.5 FT		SOIL VAPOR READING, PPM	UNIFIED SOIL CLASSIFICATION SYSTEM			
표	ŏ	Z Ţ.	5		X E	ōK			
Z	2 <u>1.</u>	N W	용교		A P	D			
Ξ	H Z	급칙	3 0	m	> 5	E SE			
DEPTH IN FEET	GRAPHIC BORING LOG	SAMPLE AND LO	BLOW COT	TIME	EA	UNIFIED SOU CLASSIFICAT SYSTEM			
Ω	5 a	\$ ₹			. <u>v</u> ×.	DOS			
40			27,50	13:22	0.0		39-40.5' SAND, tan, fine sand, moist, no odor		
		$I \mathrel{dash}$							
			8,10,11	13:25	0.0		44-45.5' SAND, tan, fine sand, moist, no odor		
45			0,10,11	15.20	0.0		The ball of the state of the st		
	^					SW			
	\bigcirc								
	DOQ								
50 —		M	10,12,13	13:30	0.0]	49-50.5' GRAVELLY SAND, tan, coarse to fine		
l ³⁰	$\bigcirc \searrow$						sand, medium to fine gravel, moist, no odor		
	\cup	\vdash							
		\vdash				SP			
			0 10 12	13:32	0.0		54 55 5! SLIGHTLY SHITY SAND ton Good and		
55 ——			8,10,12	13:32	0.0	1	54-55.5' SLIGHTLY SILTY SAND, tan, fine sand, moist, no odor		
							moist, no odor		
			11,12,14	13:36	0.0	ļ	59-60.5' SAND, tan, fine sand, moist, no odor		
60									
				-					
			4.50				C4 C# 510427D		
65 —		M	6,7,8	13:40	0.0		64-65.5' SAND, tan, fine sand, moist, no odor		
			1	1					
			1						
		-	1						
			7,9,10	13:45	0.0		69-70.5' SAND, tan, fine sand, moist, no odor		
70		1 🛋	,,,						
	1		1			'			
]]						
75 —]		1						
75 ——	1	1	1						
	4	-	1			1			
	-	-	1						
	-		1						
NOTES:	1				<u> </u>	<u> </u>			
TOLES:									

Note: This boring log represents conditions only at time and location indicated.

LOGGED BY: BHM DATE: 12/7/2009 APPROVED BY: BHM RG#: 5649

CLIENT: Larry Patsouras PROJECT NO.: 1576 DRILL HOLE: E-1

SITE LOCATION: 11630-11700 Burke Street, Santa Fe Springs, CA 90670

DRILLING CO: Drill International TYPE OF RIG: Geoprobe w/250 4x4

DRILLING METHOD/EQUIPMENT: Geoprobe GH-40 HOLE DIAMETER: 1.5"

DRIVE WEIGHT/HEIGHT OF DROP: 22000 lbs/bl REFERENCE OR DATUM: Ground Level

START DATE: 11/29/94 COMPLETION DATE: 11/29/94

NOTES

TD Drilled 26 feet. TD sampled 26 feet. No ground water encountered. No caving.

ENVIRONMENTAL AUDIT, INC:

NOTE: This Boring Log Represents Conditions Only at Time and Location Indicated. Subsurface Conditions May Differ at Other Locations and Times.

CLIENT: Larry Patsouras PROJECT NO.: 1576 DRILL HOLE: E-2

SITE LOCATION: 11630-11700 Burke Street, Santa Fe Springs, CA 90670

DRILLING CO: Drill International TYPE OF RIG: Geoprobe w/250 4x4

DRILLING METHOD/EQUIPMENT: Geoprobe GH-40 HOLE DIAMETER: 1.5"

DRIVE WEIGHT/HEIGHT OF DROP: 22000 lbs/bl REFERENCE OR DATUM: Ground Level

START DATE: 11/29/94 COMPLETION DATE: 11/29/94

NOTES:

TD Drilled 26 feet. TD sampled 26 feet. No ground water encountered. No caving.

ENVIRONMENTAL AUDIT, INC.

NOTE: This Boring Log Represents Conditions Only at Time and Location Indicated. Subsurface Conditions May Differ at Other Locations and Times.

CLIENT: Larry Patsouras PROJECT NO.: 1576 DRILL HOLE: E-3

SITE LOCATION: 11630-11700 Burke Street, Santa Fe Springs, CA 90670

DRILLING CO: Drill International TYPE OF RIG: Geoprobe w/250 4x4

DRILLING METHOD/EQUIPMENT: Geoprobe GH-40 HOLE DIAMETER: 1.5"

DRIVE WEIGHT/HEIGHT OF DROP: 22000 lbs/bl REFERENCE OR DATUM: Ground Level

START DATE: 11/29/94 COMPLETION DATE: 11/29/94

DEPTH IN FEET GRAPHIC BORING LOG SAMPLE SIZE & LOCATION BLOW COUNTS PER 0.5 FT	TIME IN HOURS	SOIL VAPOR READING, PPM	UNIFIED SOL CLASSIFICATION SYSTEM U.S.C.S.	DESCRIPTION In Following Order: LITHOLOGY, color, grain size, sorting, angulanty, fossils, consistency, wetness
0			SM	0.7 0-0.7' CONCRETE
5	1120	0.4	SP	4-6' SILTY SAND, reddish brown, very fine sand, moist, loose.
10-	1130	1.7		9-11' SAND, dark brown, fine, poorly graded, angular, moist, loose.
15—	1140	1.3		14-16' SAND, brown, medium to fine, poorly graded, angular, moderately moist, loose.
20-	1150	2.2		19-21' SAND, dark brown, medium, poorly graded, moist, loose.
25—	1200	1.3		24-26' SAND, brown, medium to coarse, poorly graded, moderately moist, loose. 26.0

NOTES:

TD Drilled 26 feet. TD sampled 26 feet. No ground water encountered. No caving.

ENVIRONMENTAL AUDIT, INC.

NOTE: This Boring Log Represents Conditions Only at Time and Location Indicated. Subsurface Conditions May Differ at Other Locations and Times.

LOGGED BY: <u>CPD</u> DATE: <u>11/29/94</u> APPROVED BY:EHL RCE#: <u>242</u>74

PAGE: 1 OF _1_ PROJECT NO.: 1576 DRILL HOLE: E-4 CLIENT: Larry Patsouras SITE LOCATION: 11630-11700 Burke Street, Santa Fe Springs, CA 90670 TYPE OF RIG: Geoprobe w/250 4x4 DRILLING CO: Drill International HOLE DIAMETER: 1.5" DRILLING METHOD/EQUIPMENT: Geoprobe GH-40 DRIVE WEIGHT/HEIGHT OF DROP: 22000 lbs/bl REFERENCE OR DATUM: Ground Level COMPLETION DATE: _11/29/94 START DATE: 11/29/94

TD Drilled 26 feet. TD sampled 26 feet. No ground water encountered. No caving.

ENVIRONMENTAL AUDIT, INC.

This Boring Log Represents Conditions Only at Time and Location Indicated, Subsurface Conditions May Differ at Other Locations and Times.

GRAPHIC GEOTEC	CHNICAL BORING LOG PAGE: 1 OF 1
CLIENT: Larry Patsouras	PROJECT NO.: 1576 DRILL HOLE: E-5
SITE LOCATION: 11630-11700 Burke Street, Santa	
DRILLING CO: Drill International	TYPE OF RIG: Geoprobe w/250 4x4
DRILLING METHOD/EQUIPMENT: Geoprobe GH-40	
DRIVE WEIGHT/HEIGHT OF DROP: 22000 lbs/bl	REFERENCE OR DATUM: Ground Level
START DATE: 11/29/94	COMPLETION DATE: 11/29/94

START DATE: 11/29/94				COMPLETION DATE: 11/29/94			
IN SUNTS	HOURS	POR 3, PPM	SOIL		DESCRIPTION		
DEPTH IN FEET GRAPHIC BORING LOG SIZE & COCATIC BLOW CI	TIME IN HOURS	SOIL VAI READING	CLASSIF SYSTEM U.S.C.S	in Followin	g Order, LITHOEGGY, color, grain size, sorting, angularity, fossils, consistency, wetness		
0			MĹ).5 Q-0.5	CONCRETE		
5——	1330	1.1		4-6′ (CLAYEY SILT, reddish brown, micaceous, moist, loose.		
10	1345	0.8		9-11′ loose	CLAYEY SILT, reddish brown, micaceous, moist,		
15—	1400	0.6	SP	15.5 loose 15.5-	5.5' CLAYEY SILT, reddish brown, micaceous, moist, 16' SAND, whitish brown, fine to medium, poorly d, angular dry, loose.		
20	1410	0.8		19-2′ grade 21.0	I' SAND, whitish brown, fine to medium, poorly d, angular, dry, loose.		
25————————————————————————————————————							

NOTES

TD Drilled 21 feet. TD sampled 21 feet. No ground water encountered. No caving.

ENVIRONMENTAL AUDIT, INC.

NOTE: This Boring Log Represents Conditions Only at Time and Location Indicated, Subsurface Conditions May Differ at Other Locations and Times.

GRAPHIC GEOTEC	HNICAL BORING LOG
CLIENT: Larry Patsouras	PROJECT NO.: 1576 DRILL HOLE: E-6
SITE LOCATION: 11630-11700 Burke Street, Santa	Fe Springs, CA 90670
DRILLING CO: <u>Drill International</u>	TYPE OF RIG: Geoprobe w/250 4x4
DRILLING METHOD/EQUIPMENT: Geoprobe GH-40	HOLE DIAMETER: _1.5"
DRIVE WEIGHT/HEIGHT OF DROP: 22000 lbs/bl	REFERENCE OR DATUM: Ground Level
OT 4 DE DAME 44 104 104	

NOTES:

TD Drilled 26 feet. TD sampled 26 feet. No ground water encountered. No caving.

ENVIRONMENTAL AUDIT, INC.

NOTE: This Boring Log Represents Conditions Only at Time and Location Indicated. Subsurface Conditions May Differ at Other Locations and Times.

GRAPHIC GEOTEC	HNICAL BURING LOG PAGE: 1 OF 2
CLIENT: Larry Patsouras	PROJECT NO.: 1576 DRILL HOLE: E-7
SITE LOCATION: 11630-11700 Burke Street, Santa	Fe Springs, CA 90670
DRILLING CO: Drill International	TYPE OF RIG: Geoprobe w/250 4x4
DRILLING METHOD/EQUIPMENT: Geoprobe GH-40	HOLE DIAMETER: 21.5"
DRIVE WEIGHT/HEIGHT OF DROP: 22000 lbs/bl	REFERENCE OR DATUM: Ground Level
START DATE: 11/30/94	COMPLETION DATE: 11/30/94

NOTES:

Continous sampling using a macro core to a depth of 32 feet. TD Drilled 50 feet. TD sampled 50 feet. Ground water encountered at approximately 48 feet. No caving.

ENVIRONMENTAL AUDIT, INC.

NOTE: This Boring Log Represents Conditions Only at Time and Location Indicated, Subsurface Conditions May Differ at Other Locations and Times.

LOGGED BY: <u>CPD</u> DATE: <u>11/30/94</u> _ APPROVED BY:EHL _ RCE#: 24274

PAGE: 2 OF 2

CLIENT: Larry Patsouras PF	ROJECT NO.: 1576 DRILL HOLE: E-7
SITE LOCATION: 11630-11700 Burke Street, Santa Fe	Springs, CA 90670
	TYPE OF RIG: Geoprobe w/250 4x4
DRILLING METHOD/EQUIPMENT: Geoprobe GH-40	HOLE DIAMETER: 21.5"
DRIVE WEIGHT/HEIGHT OF DROP: 22000 lbs/bl	REFERENCE OR DATUM: Ground Level
START DATE: _11/30/94	COMPLETION DATE: 11/30/94

DEPTH IN IN GRAPHIC GRAPHIC LOG LOG SAMPLE SIZE & LOCATION BLOW COUNTS PER O.5 F.F.	TIME IN HOURS	SOIL VAPOR READING, PPM	UNIFIED SOIL CLASSIFICATION SYSTEM U.S.C.S	DESCRIPTION In Following Order: LITHOLOGY, color, grain size, sorting, angularity, fossiis; consistency, wetness
30	0920	2.4		28-30' SAND, whitish black, fine to medium, poorly graded, angular, moderately moist, moderately dense. 30-32' SAND, whitish brown, fine to medium, poorly graded, angular, rare gravel, high quartz content, moderately moist, loose. 32-38' SAND, whitish black, fine to medium, poorly graded, angular, moist, moderately dense.
40	1000	6.8	SM	38-40' SILTY SAND, brown, fine, micaceous, moist, moderately compact. 40.0 40-45' CLAYEY SILT, reddish brown, micaceous, moist, dense.
45	1037	6.8	CL	45.0 45-50' SILTY CLAY, reddish brown, micaceous, saturated, compact, stiff.
50				50.0 NOTE: Ground water rose in the borehole to 42-43' as observed on the drive rods.

NOTES:

Continous sampling using a macro core to a depth of 32 feet. TD Drilled 50 feet. TD sampled 50 feet. Ground water encountered at approximately 48 feet. No caving.

ENVIRONMENTAL AUDIT, INC.

NOTE: This Boring Log Represents Conditions Only at Time and Location Indicated. Subsurface Conditions May Differ at Other Locations and Times.

GRAPHIC GEOTECHNICAL BORING LOG PAGE: 1 OF 1									
CLIENT: Larry Patsouras	PROJECT NO.: 1576 DRILL HOLE: E-8								
SITE LOCATION: 11630-11700 Burke Street, Santa	Fe Springs, CA 90670								
DRILLING CO: Drill International	TYPE OF RIG: Geoprobe w/250 4x4								
DRILLING METHOD/EQUIPMENT: Geoprobe GH-40	HOLE DIAMETER: 1.5"								
DRIVE WEIGHT/HEIGHT OF DROP: 22000 lbs/bl	REFERENCE OR DATUM: Ground Level								

EAU

ENVIRONMENTAL AUDIT, INC.

NOTE: This Boring Log Represents Conditions Only at Time and Location Indicated. Subsurface Conditions May Differ at Other Locations and Times.

LOGGED BY: <u>CPD</u> DATE: <u>11/30/94</u> APPROVED BY:<u>EHL</u> RCE#: <u>24274</u>

PAGE: 1 OF 2 PROJECT NO.: 1576 DRILL HOLE: E-9 CLIENT: Larry Patsouras SITE LOCATION: 11630-11700 Burke Street, Santa Fe Springs, CA 90670 ____ TYPE OF RIG: <u>Geoprobe w/250 4x4</u> DRILLING CO: Drill International DRILLING METHOD/EQUIPMENT: Geoprobe GH-40 HOLE DIAMETER: 1.5" DRIVE WEIGHT/HEIGHT OF DROP: 22000 !bs/bl ____ REFERENCE OR DATUM: Ground Level COMPLETION DATE: _11/30/94 START DATE: 11/30/94

31AIII BATE:					
DEPTH IN FEET GRAPHIC BORING LOG SAMPLE SIZE & LOCATION BLOW COUNTS PER 0.5 FT	TIME IN HOURS	SOIL VAPOR READING, PPM	UNIFIED SOIL CLASSIFICATION SYSTEM U.S.C.S.	in F	DESICRIPTION Ollowing Order: LITHOLOGY, color, grain size, sorting, angularity, fossils, consistency, wetness
0			ML	0.3	0-0.3' CONCRETE
5	1230	5	ČL	6.0	4-6' CLAYEY SILT, stained black, moderately moist, dense, strong odor.
10-	1235	48	ML	11.0	9-11' CLAY, stained black, moderately moist, stiff, strong odor.
15	1240	30	SP	16.0	14-16' CLAYEY SILT, stained black, moderately moist, dense, strong odor.
20	. 1245	20.6			19-21' SAND, stained black, medium, poorly graded, moderately moist, moderately dense.
25	1250	15			24-25.5' SAND, whitish black, medium, poorly graded, moderately moist, moderately dense. 25.5-26' SAND, brown, medium, poorly graded, moderately moist, moderately dense. **Continued Next Page**

TD Drilled 31 feet, TD sampled 31 feet, No ground water encountered. No caving.

This Boring Log Represents Conditions Only at Time and Location Indicated. Subsurface Conditions May Differ at Other Locations

and Times.

GRAPHIC GEOTECI	HNICAL BORING LOG PAGE: 2 OF 2
CLIENT: Larry Patsouras	PROJECT NO.: 1576 DRILL HOLE: E-9
SITE LOCATION: 11630-11700 Burke Street, Santa F	Fe Springs, CA 90670
DRILLING CO: Drill International	TYPE OF RIG: Geoprobe w/250 4x4
DRILLING METHOD/EQUIPMENT: Geoprobe GH-40	HOLE DIAMETER: 1.5"
DRIVE WEIGHT/HEIGHT OF DROP: 22000 lbs/bl	REFERENCE OR DATUM: Ground Level
START DATE: _11/30/94	COMPLETION DATE: 11/30/94
UHS PM PM ZFION	DESCRIPTION

NOTES:

TD Drilled 31 feet. TD sampled 31 feet. No ground water encountered. No caving.

NOTE: This Boring Log Represents Conditions Only at Time and Location Indicated. Subsurface Conditions May Differ at Other Locations and Times.

LOGGED BY: <u>CPD</u> DATE: <u>11/30/94</u> APPROVED BY:EHL RCE#: <u>24274</u>

CLIENT:					PROJEC		576 DRILL HOLE: E-9A
SITE LOCATION: 11630-11700 Burke Street, Santa Fe Springs, CA DRILLING COMPANY: Cascade Drilling TYPE OF RIG: CME-85							
		_	-				TYPE OF RIG: CME-85
DRILLING METHOD/EQUIPMENT: Hollow Stem Auger DRIVE WEIGHT/HEIGHT OF DROP: 140 # @, 30"						HOLE DIAMETER: 8"	
				P: <u>140</u>	#@30"		REFERENCE OR DATUM: Surface
START D	ATE:	12/7/20)09 	00000000	***********		COMPLETION DATE: 12/7/2009
DEPTH IN PEET	GRAPHIC BORING LOG	SAMPLE SIZE AND LOCATION	BLOW COUNTS PER 0.5 FT	TIME	SOIL VAPOR READING, PPM	UNIFIED SOIL CLASSIFICATION SYSTEM	DESCRIPTION
0		ГЦ				ML	
5		¥	7,8,8,	10:00	0.0	SM	4-5.5 SANDY SILT, rust, fine sand, moist, no odor
10		X	7,8,9	10:05	0.9		9-10.5' SILTY SAND, rust, fine sand, moist, no odor
15		X	7,10,12	10:10	0.0	SP	14-15.5' SAND, tan, fine sand, moist, no odor
20			6,8,10	10:15	0.0		19-20.5' SAND, tan, fine sand, moist, no odor
25		¥	9,9,10	10:20	0.0		24-25.5' SAND, tan. fine sand. rare fine gravel, moist, no odor
30		×	10,12,13	10:25	0.0		29-30.5' SAND, tan, fine sand, moist, no odor
35		A	8,9,11	10:30	0.0	ML	34-35.5' VERY SANDY SILT, brown, very fine sand, moist, no odor
NOTES:							

Note: This boring log represents conditions only at time and location indicated.

LOGGED BY: BHM DATE: 12/7/2009 APPROVED BY: BHM RG#: 5649

CLIENT:					PROJEC		576 DRILL HOLE: E-9A
SITE LOCATION: 11630-11700 Burke Street, Santa Fe Springs, CA							
DRILLING		-	Cascade I				TYPE OF RIG: CME-85
DRILLING					llow Sten	n Auger	HOLE DIAMETER: 8"
DRIVE W				': <u>140</u>	#@30"		REFERENCE OR DATUM: Surface
START DA	ATE:	12/7/20	009				COMPLETION DATE: 12/7/2009
		-				Z	DESCRIPTION
		SAMPLE SIZE AND LOCATION	BLOW COUNTS PER 0.5 FT		SOIL VAPOR READING, PPM	UNIFIED SOIL CLASSIFICATION SYSTEM	
量	ŏ	AT.	5		8 5	Ō,⊀	
DEPTH IN FEET	graphic Boring Log	$\mathbb{R}^{\mathbb{N}}$	용도 [4 9	UNIFIED SOIL CLASSIFICAT SYSTEM	
	置名:		3 6	—	> 🚡	SSE	
3	GRAPHIC BORING I	₹ Z	으품	TIME	EG	Z Y S	
		: ⊘ :≤:	<u> </u>				20 40 C XXXXX CANTXX CH T 1
40		M	8,9,13	10:35	0.0		39-40.5' VERY SANDY SILT, brown, very fine sand,
			i			CL	moist, no odor
		ΙН				CL	
			8,10,12	10:40	0.0		44-45.5' SILTY CLAY, tan, moist, no odor
45		À	0,10,12	10.10	0.0		The best of the state of the st
—							
					!		
							i l
50		Y	11,12,13	10:45	0.0		49-50.5' SILTY CLAY, rust, moist, no odor
· · ·							
l		_				SM	
		i					
l —			10 10 14	10.60	1.2		EA SE STAITEN OUT TV CANTO And Garage 1 and a
55		M	10,12,14	10:50	1.2		54-55.5' VERY SILTY SAND, tan, fine sand, moist, no odor
—						SP	
						51	
			-				
		\Box	7,8,9	10:55	0.5		59-60.5' SAND, tan, fine sand, moist, no odor
60							
l							C. C. C. C. C. C. C. C. C. C. C. C. C. C
65 ——		M	10,11,12	11:00	0.3		64-65.5' SAND, tan, fine sand, moist, no odor
		! ⊢					
		! ⊢	1 1				
			7,8,9	11:05	0.0		69-70.5' SAND, tan, fine sand, moist, no odor
70			,,,,,,				
	1		1				
]]		ŀ		
75]]				
75]						
l ~	1		↓				
	1	_					
	-	-					
NOTES:							<u> </u>
NOTES:							

LOGGED BY: BHM DATE: 12/7/2009 APPROVED BY: BHM RG#: 5649

CLIENT: Larry Patsouras PROJECT NO.: 1576 DRILL HOLE: E-10

SITE LOCATION: 11630-11700 Burke Street, Santa Fe Springs, CA 90670

DRILLING CO: Drill International TYPE OF RIG: Geoprobe w/250 4x4

DRILLING METHOD/EQUIPMENT: Geoprobe GH-40 HOLE DIAMETER: 1.5"

DRIVE WEIGHT/HEIGHT OF DROP: 22000 lbs/bl REFÉRENCE OR DATUM: Ground Level

START DATE: 11/30/94 COMPLETION DATE: 11/30/94

NOTES:

TD Drilled 21 feet. TD sampled 21 feet. No ground water encountered. No caving.

ENVIRONMENTAL AUDIT, INC.

NOTE: This Boring Log Represents Conditions Only at Time and Location Indicated. Subsurface Conditions May Differ at Other Locations and Times.

GRAPHIC GEOTECHNICAL BORING LOG PAGE: 1 OF 1 CLIENT: Larry Patsouras PROJECT NO.: 1576 DRILL HOLE: E-11 SITE LOCATION: 11630-11700 Burke Street, Santa Fe Springs, CA 90670 DRILLING CO: Drill International TYPE OF RIG: Geoprobe w/250 4x4 DRILLING METHOD/EQUIPMENT: Geoprobe GH-40 DRIVE WEIGHT/HEIGHT OF DROP: 22000 lbs/bl REFERENCE OR DATUM: Ground Level

TD Drilled 16 feet, TD sampled 16 feet. No ground water encountered. No caving,

ENVIRONMENTAL AUDIT, INC.

NOTE: This Boring Log Represents Conditions Only at Time and Location Indicated. Subsurface Conditions May Differ at Other Locations and Times.

GRAFIIIC GEOTE	DINICAL BURING LOG
CLIENT: Larry Patsouras	PROJECT NO.: 1576 DRILL HOLE: E-12
SITE LOCATION: 11630-11700 Burke Street, Sant	a Fe Springs, CA 90670
DRILLING CO: Drill International	TYPE OF RIG: Geoprobe w/250 4x4
DRILLING METHOD/EQUIPMENT: Geoprobe GH-40	HOLE DIAMETER: 1.5"
DRIVE WEIGHT/HEIGHT OF DROP: 22000 lbs/bl	
START DATE: _11/30/94	COMPLETION DATE: 11/30/04

CDADUIC CECTECUATION DOD

NOTES:

TD Drilled 21 feet. TD sampled 21 feet. No ground water encountered. No caving.

ENVIRONMENTAL AUDIT, INC.

NOTE: This Boring Log Represents Conditions Only at Time and Location Indicated. Subsurface Conditions May Differ at Other Locations and Times

GRAPHIC GEOTEC	PAGE: 1 OF 2
CLIENT: Larry Patsouras	PROJECT NO.: 1576 DRILL HOLE: E-14
SITE LOCATION: 11630-11700 Burke Street, Santa	Fe Springs, CA 90670
DRILLING CO: Drill International	TYPE OF RIG: Geoprobe w/250 4x4
DRILLING METHOD/EQUIPMENT: Geoprobe GH-40	HOLE DIAMETER: 1.5"
DRIVE WEIGHT/HEIGHT OF DROP: 22000 lbs/bl	REFERENCE OR DATUM: Ground Level

TO ADDITE CHATECUNICAL DODING LOA

NO LES

TD Drilled 46 feet. TD sampled 46 feet. No ground water encountered. No caving.

ENVIRONMENTAL AUDIT, INC.

NOTE: This Boring Log Represents Conditions Only at Time and Location Indicated. Subsurface Conditions May Differ at Other Locations and Times.

PAGE: 2 OF 2 PROJECT NO.: 1576 DRILL HOLE: E-14 CLIENT: Larry Patsouras SITE LOCATION: 11630-11700 Burke Street, Santa Fe Springs, CA 90670 DRILLING CO: Drill International TYPE OF RIG: Geoprobe w/250 4x4 DRILLING METHOD/EQUIPMENT: Geoprobe GH-40 HOLE DIAMETER: 1.5" DRIVE WEIGHT/HEIGHT OF DROP: 22000 lbs/bl REFERENCE OR DATUM: Ground Level START DATE: 12/1/94 COMPLETION DATE: 12/1/94

TD Drilled 46 feet. TD sampled 46 feet. No ground water encountered. No caving.

ENVIRONMENTAL AUDIT, INC.

This Boring Log Represents Conditions Only at Time and Location Indicated, Subsurface Conditions May Differ at Other Locations and Times.

CLIENT: Larry Patsouras PROJECT NO.: 1576 DRILL HOLE: E-15

SITE LOCATION: 11630-11700 Burke Street, Santa Fe Springs, CA 90670

DRILLING CO: Drill International TYPE OF RIG: Geoprobe w/250 4x4

DRILLING METHOD/EQUIPMENT: Geoprobe GH-40 HOLE DIAMETER: 1.5"

DRIVE WEIGHT/HEIGHT OF DROP: 22000 | bs/bl REFERENCE OR DATUM: Ground Level

START DATE: 12/1/94

COMPLETION DATE: 12/1/94

START DAT	E: <u>12/</u> 1/	94					COMPLETION DATE: <u>12/1/94</u>
DEPTH IN FEET GRAPHIC BOBING	LOG SAWRE SIZE & LOCATION	BLOW COUNTS PER 0.5 FT	TIME IN HOURS	SOIL VAPOR READING, PPM	UNITIED SOIL CLASSIFICATION SYSTEM U.S.C.S.	Ĭſſ	DESIGRIPTION Following Order: LITHOLOGY; color, grain size, sorting, angularity, fossils; consistency, wetness
0-					CL	0.3	0-0.3' ASPHALT
5			1015	9.2			4-6' SILTY CLAY, reddish brown, moist, very compact.
10-			1030	, 4.6	SP	11.0	9-11' SILTY CLAY, reddish brown, moist, loose.
15—			1040	5.2			14-16' SAND, reddish brown, fine to medium, poorly graded, angular, moist, loose.
20-			1055	4.9			19-21' SAND, light brown to tan, fine to medium, poorly graded, moist, loose.
25			1120	8.3			24-26' SAND, light brown to tan, fine to medium, poorly graded, moist, loose. Continued Next Page

NOTES:

TD Drilled 46 feet. TD sampled 46 feet. No ground water encountered. No caving.

ENVIRONMENTAL AUDIT, INC.

NOTE: This Boring Log Represents Conditions Only at Time and Location Indicated. Subsurface Conditions May Differ at Other Locations and Times.

	PAGE: 2 OF 2
CLIENT: Larry Patsouras PRO	DJECT NO.: 1576 DRILL HOLE: E-15
SITE LOCATION: 11630-11700 Burke Street, Santa Fe S	prings, CA 90670
DRILLING CO: Drill International	TYPE OF RIG: Geoprobe w/250 4x4
DRILLING METHOD/EQUIPMENT: Geoprobe GH-40	HOLE DIAMETER: 1.5"
DRIVE WEIGHT/HEIGHT OF DROP: 22000 lbs/bl	REFERENCE OR DATUM: Ground Level
START DATE: 12/1/94	COMPLETION DATE: 12/1/94

NOTES:

TD Drilled 46 feet, TD sampled 46 feet, No ground water encountered. No caving.

ENVIRONMENTAL AUDIT, INC.

This Boring Log Represents Conditions Only at Time and Location Indicated, Subsurface Conditions May Differ at Other Locations and Times.

GRAPHIC GEOTECHNICAL BORING LOG PAGE: 1 OF 1						
CLIENT: Larry Patsouras PROJECT NO.: 1576 DRILL HOLE: E-16	_					
SITE LOCATION: 11630-11700 Burke Street, Santa Fe Springs, CA 90670						
DRILLING CO: <u>Drill International</u> TYPE OF RIG: <u>Geoprobe w/250 4x4</u>						
DRILLING METHOD/EQUIPMENT: Geoprobe GH-40 HOLE DIAMETER: 1.5"	_					
DRIVE WEIGHT/HEIGHT OF DROP: 22000 lbs/bl REFERENCE OR DATUM: Ground Level	_					

COMPLETION DATE: 12/1/94

DEPTH IN FEET GRAPHIC BORING LOG SAMPLE SIZE &	BLOW COUNTS PER 0 5 FT TIME IN HOURS	SOIL VAROR READING RPM	CLASSIFICATION SYSTEM U.S.C.S.	DES CRIPTION In Following Order: LITHOLOGY, color, grain size, sorting, angularity, fossils, consistency, wetness
0			SP	0.3 0-0.3' CONCRETE 4-6' SAND, light brown, fine to medium, poorly graded,
5	1345		ML	4-6' SAND, light brown, fine to medium, poorly graded, moderately moist, loose. 6.0 9-11' SILT, reddish brown, rare clay, moderately moist, moderately dense.
15—	1355	6.8		11.0
20-				
25—				

NOTES:

START DATE: 12/1/94

TD Drilled 11 feet. TD sampled 11 feet. No ground water encountered. No caving.

ENVIRONMENTAL AUDIT, INC.

NOTE: This Boring Log Represents Conditions Only at Time and Location Indicated. Subsurface Conditions May Oiffer at Other Locations and Times.

GRAPHIC GEOTECHNICAL BORING LOG						
	PROJECT NO.: 1576 DRILL HOLE: E-17					
SITE LOCATION: 11630-11700 Burke Street, Santa Fe	Springs, CA 90670					
DRILLING CO: Drill International	TYPE OF RIG: Geoprobe w/250 4x4					
DRILLING METHOD/EQUIPMENT: Geoprobe GH-40	HOLE DIAMETER: _1.5"					
DRIVE WEIGHT/HEIGHT OF DROP: 22000 lbs/bl	REFERENCE OR DATUM: Ground Level					

NOTES:

TD Drilled 21 feet. TD sampled 21 feet. No ground water encountered. No caving.

ENVIRONMENTAL AUDIT, INC.

NOTE: This Boring Log Represents Conditions Only at Time and Location Indicated. Subsurface Conditions May Differ at Other Locations and Times.

Page 1 of 2

CLIENT: Larry Patsouras	EAI PROJECT NO.: 1576	DRILL HOLE: MW-1

SITE LOCATION: 11700 Burke Street, Santa Fe Springs, CA 90670

DRILLING CO: ABC Liovin Drilling TYPE OF RIG: CME 75

DRILLING METHOD/EQUIPMENT: Hollow Stem Auger DRIVE WEIGHT: 140 lbs. at 30° HOLE DIAMETER: 8 inches REFERENCE OR DATUM: Ground Surface

START DATE: October 3, 1995

LOGGED BY: SAB

COMPLETION DATE: October 3, 1995

APPROVED BY: EHL RCE NO. 24274

LOGGED					
DEPTH INTERVAL IN FEET	BLOW COUNTS PER 0.5 FEET	TIME	TEV-SOIL VAPOR READING (ppm)	UNIFIED SOIL CLASS SYSTEM	DESCRIPTION
0-0.3"					ASPHALT
4-5.5'	9/15/18	08:25	95	CL	SILTY CLAY, reddish brown, moist, slight hydrocarbon odor.
9-10.5'	3/7/6	08:30	110	CL	SILTY CLAY, reddish brown, moist, no hydrocarbon odor.
14-15.5'	5/10/15	08:35	25	SP	SAND, tan, fine to medium, moist, slight hydrocarbon odor.
19-20.5'	6/25/19	08:40	98	SP	SAND, tan, fine to medium, moist, no hydrocarbon odor.
24-25.5'	18/30/50	08:45	95	SP	SAND, tan, coarse, some gravel, moist, no hydrocarbon odor.
29-30.5	23/31/47	08:50	110	SP	SAND, reddish brown, coarse, some gravel, moist, no hydrocarbon odor.
34-35.5'	20/36/37	08:55	110	CL	SILTY CLAY, reddish brown, moist, no hydrocarbon odor.
40-40.5′	7/31/50	09:05	110	SP	SAND, Ian, coarse, some gravel, saturated, no hydrocarbon odor.
44-45.5'	6/9/11	09:10	95	CL	CLAY, brown, some fine sand, saturated, no hydrocarbon odor.

Page 2 of 2

CLIENT: Larry Patsouras EAI PROJECT NO.: 1576 DRILL HOLE: MW-1

SITE LOCATION: 11700 Burke Street, Santa Fe Springs, CA 90670

DRILLING CO: ABC Liovin Drilling TYPE OF RIG: CME 75

DRILLING METHOD/EQUIPMENT: Hollow Stem Auger DRIVE WEIGHT: 140 lbs. at 30"

HOLE DIAMETER: 8 inches REFERENCE OR DATUM: Ground Surface

START DATE: October 3, 1995 COMPLETION DATE: October 3, 1995

LOGGED BY: SAB APPROVED BY: EHL RCE NO. 24274

BLOW TLV SOIL UNIFIED VAPOR COUNTS SOIL DEPTH READING CLASS INTERVAL PER in feet 0.5 FEET TIME (ppm) SYSTEM DESCRIPTION

50-551

SP

SAND, ian, fine, saturated, no hydrocarbon odor.

NOTES: GROUND WATER WAS ENCOUNTERED AT 40 FEET BGS.

THIS BORING WAS CONVERTED IN WELL MW-1 (SEE MW-1 WELL CONSTRUCTION DETAILS FOR SPECIFICS)

ABC STAFF: DAVE MOLANO (DRILLER), CHUCK PARRA AND RAMON SANCHEZ (HELPERS)

THIS BORING LOG REPRESENTS CONDITIONS ONLY AT TIME AND LOCATION INDICATED. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND TIMES.

BHM: WORD: L576-MWI

Page 1 of 2

CLIENT: Larry Patsouras EAI PROJECT NO.: 1576 DRILL HOLE: MW-1

SITE LOCATION: 11700 Burke Street, Santa Fe Springs, CA 90670

DRILLING CO: ABC Liovin Drilling TYPE OF RIG: CME 75

DRILLING METHOD/EQUIPMENT: Hollow Stem Auger DRIVE WEIGHT: 140 lbs. at 30"

HOLE DIAMETER: 8 inches REFERENCE OR DATUM: Ground Surface START DATE: October 3, 1995 COMPLETION DATE: October 3, 1995

LOGGED BY: SAB APPROVED BY: EHL RCE NO. 24274

DEPTH ENTERVAL IN PEET	BLOW COUNTS PER 6.5 PEET	TIME	TLV SOIL VAPOR READING (ppm)	DNIFTED SOIL CLASS SYSTEM	DESCRIPTION
0-0.3"					ASPHALT
4-5.5'	9/15/18	08:25	95	CL	SILTY CLAY, reddish brown, moist, slight hydrocarbon odor.
9-10.51	3/7/6	08:30	110	CL	SILTY CLAY, reddish brown, moist, no hydrocarbon odor,
14-15.5'	5/10/15	08:35	25	SP	SAND, can, fine to medium, moist, slight hydrocarbon odor.
19-20.5'	6/25/19	08:40	98	SP	SAND, tan, fine to medium, moist, no hydrocarbon odor.
24-25.5'	18/30/50	08:45	95	SP	SAND, Ian, coarse, some gravel, moist, no hydrocarbon odor.
29-30.5'	23/31/47	08:50	110	SP	SAND, reddish brown, coarse, some gravel, moist, no hydrocarbon odor.
34-35.5'	20/36/37	08:55	110	CL	SILTY CLAY, reddish brown, moist, no hydrocarbon odor.
40-40,5	7/31/50	09:05	110	SP	SAND, ian, coarse, some gravel, saturated, no hydrocarbon odor.
44-45.5'	6/9/11	09:10	95	CL	CLAY, brown, some fine sand, saturated, no hydrocarbon odor.

Page 2 of 2

CLIENT: Larry Patsouras EAI PROJECT NO.: 1576 DRILL HOLE: MW-1

SITE LOCATION: 11700 Burke Street, Santa Fe Springs, CA 90670

DRILLING CO: ABC Liovin Drilling TYPE OF RIG: CME 75

DRILLING METHOD/EQUIPMENT: Hollow Stem Auger DRIVE WEIGHT: 140 lbs. at 30° HOLE DIAMETER: 8 inches REFERENCE OR DATUM: Ground Surface

START DATE: October 3, 1995 COMPLETION DATE: October 3, 1995

LOGGED BY: SAB APPROVED BY: EHL RCE NO. 24274

TLV SOIL UNIFIED BLOW VAPOR SOIL COUNTS DEPTH READING CLASS INTERVAL PER DESCRIPTION IN FEET 0.5 FEET SYSTEM TIME (ppm)

50-551

SP

SAND, ran, fine, saturated, no hydrocarbon odor.

NOTES: GROUND WATER WAS ENCOUNTERED AT 40 FEET BGS.

THIS BORING WAS CONVERTED IN WELL MW-1 (SEE MW-1 WELL CONSTRUCTION DETAILS FOR SPECIFICS)

ABC STAFF: DAVE MOLANO (DRILLER), CHUCK PARRA AND RAMON SANCHEZ (HELPERS)

THIS BORING LOG REPRESENTS CONDITIONS ONLY AT TIME AND LOCATION INDICATED. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND TIMES.

BHM:WORD:1576-MWI

CLIENT: Patsouras Property PROJECT NO: 1576 DRILL HOLE: MW-1D							
SITE LOCATION: 11630-11700 Burke Street, Santa Fe Springs, CA							
DRILLING COMPANY: Cascade Drilling TYPE OF RIG: CME-85							
DRILLING METHOD/EQUIPMENT: Hollow Stem Auger						HOLE DIAMETER: 8"	
							REFERENCE OR DATUM: Surface
START DA	AIE:	12/7/20	JU9 .::::::::::::::::::::::::::::::::::::	anderstrates	***********	Markinski	COMPLETION DATE: 12/7/2009
DEPTH IN FEET	GRAPHIC BORING LOG	SAMPLE SIZE AND LOCATION	BLOW COUNTS PER 0.5 FT	ТІМЕ	SOIL VAPOR READING, PPM	UNIFIED SOIL CLASSIFICATION SYSTEM	DESCRIPTION
50 —		ΙН					
55						:	NOT LOGGED - SEE LOG FOR WELL MW-1
60 —		M	7,8,13	12:05	ŞP		59-60.5' SAND, tan, fine sand, moist, no odor
65		X	7,11,12	12:10			64-65.5' SAND, tan, fine sand, moist, no odor
65			6,11,13	12:15			69-70.5' SAND, tan, fine sand, moist, no odor
70 —			0,11,13	12.13			05-70.5 SAND, van, mie sand, moist, no odor
75			6,8,11	12:20			74-75.5' SLIGHTLY SILTY SAND, olive, fine sand, saturated, no odor
80			5,7,8	12:25			79-80.5' SLIGHTLY SILTY SAND, olive, fine sand, saturated, no odor
85							
NOTES:	Well MV	W-1 was	drilled o	ut and rep	placed by	this well (MW-ID)

LOGGED BY: BHM DATE: 12/7/2009 APPROVED BY: BHM RG#: 5649

GRAPHIC GEOTEC	CHNICAL BORING LOG		
CLIENT: Larry Patsouras	PROJECT NO.: 1576 DRILL HOLE: MW-2		
SITE LOCATION: 11630-11700 Burke Street, Santa Fe Spri			
DRILLING CO: Cascade Drilling	TYPE OF RIG: Mobile B-61		
DRILLING METHOD/EQUIPMENT: _HSA			
DRIVE WEIGHT/HEIGHT OF DROP: 140 #@ 30"			
START DATE: 12/23/96	COMPLETION DATE: 12/23/96		
EPTH EET EET AAPHIC AAPHIC AAPHIC AAPHIC AAPHIC AAPHIC AAPHIC AAPHIC AAPHIC AAPHIC AAPHIC AASTER SAC, S.	DESCRIPTION		
EFTH EET EET CABPIC CABPIC CABPIC CABC CA	In Following Order: LITHOLOGY, color, grain size, sorting, angularity, fossils, consistency, wetness		

NOTES:

Converted to well MW-2

ENVIRONMENTAL AUDIT, INC.

NOTE: This Boring Log Represents Conditions Only at Time and Location Indicated. Subsurface Conditions May Differ at Other Locations and Times.

LOGGED BY: BMH DATE: 12/23/96 APPROVED BY: BHM RG #: 5649

		GRA	APHIO	C GE O	OTECHNICAL BORING LOG PAGE: 2 OF 2						
CLIENT: Larry l	LIENT: Larry Patsouras PROJECT NO.: 1576 DRILL HOLE: MW-2										
SITE LOCATION	TE LOCATION: 11630-11700 Burke Street, Santa Fe Springs, CA 90670										
RILLING CO: Cascade Drilling TYPE OF RIG: Mobile B-61											
DRILLING METHOD/EQUIPMENT: HSA HOLE DIAMETER: 8"											
DRIVE WEIGHT/HEIGHT OF DROP: 140 # @ 30" REFERENCE OR DATUM: Surface											
TART DATE: 12/23/96 COMPLETION DATE: 12/23/96											
DEPTH IN FEET SRAPHIC BORING	SAMPLE SIZE & LOCATION BLOW COUNTS PER 0.8 FT	TIME IN HOURS	SOIL WAPOR READING, PPM	UNIFIED SOIL CLASSIFICATION SYSTEM U.S.C.S.							
45	20 30	10:40			very fine sand, stiff, saturated.						
50	8 15 25	10:45			49'-50.5' SLIGHTLY SANDY CLAYEY SILT, rust to olive, very fine sand, stiff, saturated.						
60	23 27 30	10:50			55.5 54'-55.5' SLIGHTLY SANDY CLAYEY SILT, rust, fine sand, saturated.						
80											

NOTES:

Converted to well MW-2

NC.

NOTE: This Boring Log Represents Conditions Only at Time and Location Indicated. Subsurface Conditions May Differ at Other Locations and

Times.

LOGGED BY: BMH DATE: 12/23/96 APPROVED BY: BHM RG #: 5649

CLIENT:				PROJECT		576 DRILL HOLE: MW-3
		11630-11700 Bur		t, Santa F	e Springs,	
		NY: Cascade D		11		TYPE OF RIG: CME-85
		D/EQUIPMENT:		llow Sten		HOLE DIAMETER: 8"
		EIGHT OF DROP	: 140	#@30"		REFERENCE OR DATUM: Surface
START D	ATE:	6/30/2009	terriranianiani	000000000000	DOCCOSTICATOR	COMPLETION DATE: 6/30/2009
DEPTH IN FEET	GRAPHIC BORING LOG	SAMPLE SIZE AND LOCATION BLOW COUNTS PER 0.5 FT	TIME	SOIL VAPOR READING, PPM	UNIFIED SOIL STATEM	DESCRIPTION
5		8,10,11	8:00	0.0	SM	4-5.5' SLIGHTLY SANDY CLAYEY SILT, rust, very fine sand, slightly moist, no odor
10		8,12,13	8:05	0.0	SP	9-10.5' SILTY SAND, reddish brown, fine sand, moist, no odor
15 —		9,11,11	8:10	0.0		14-15.5' SAND, tan, fine sand, moist, no odor
20		9,14,14	8:20	0.0		19-20.5' SAND, tan, fine sand, moist, no odor
25		9,14,14	8:25	0.0		24-25.5' SAND, tan, fine sand, moist, no odor
30		10,12,14	8:30	0.0	ML	29-30.5' SLIGHTLY SANDY CLAYEY SILT, brown, very fine sand, moist, no odor
35		13,14,1:	8:35	0.0		34-35.5' SLIGHTLY SANDY CLAYEY SILT, brown, very fine sand, moist, no odor
					SP	
310			<u></u>			
NOTES	S:					

LOGGED BY: BHM DATE: 6/30/2009 APPROVED BY: BHM RG#: 5649

CLIENT: Patsouras	Property	PF	ROJECT	NO: 1:	DRILL HOLE: MW-3						
SITE LOCATION: 11630-11700 Burke Street, Santa Fe Springs, CA											
DRILLING COMPANY: Cascade Drilling TYPE OF RIG: CME-85											
DRILLING METHO			w Stem	Auger	HOLE DIAMETER: 8"						
DRIVE WEIGHT/H		140#	@ 30"		REFERENCE OR DATUM: Surface						
START DATE:	6/30/2009				COMPLETION DATE: 6/30/2009						
DEPTH IN FEET GRAPHIC BORING LOG	SAMPLE SIZE AND LOCATION BLOW COUNTS PER 0.5 FT	TIME	SOIL VAPOR READING, PPM	UNIFIED SOIL CLASSIFICATION SYSTEM	DESCRIPTION						
111111111111111111111111111111111111111	10,12,12	8:40	0.0	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	39-40.5' SAND, tan, fine to medium sand, moist, no odor						
40			,	CL							
45 ——	5,14,14	8:45	0.0		44-45.5' SLIGHTLY SANDY SILTY CLAY, brown,						
			i	ML	very fine sand, very moist, no odor						
50	12,14,16	8:50	0.0		49-50.5' SANDY CLAYEY SILT, rust, very fine sand, very moist, no odor						
55	12,14,17	8:55	0.0	SM SP	54-55.5' VERY SILTY SAND, olive brown, fine sand, very moist, no odor						
60	10,14,16	9:00	0.0		59-60.5' SAND, tan, fine sand, very moist, no odor						
65	11,12,14	9:05	0.0		64-65.5' SAND, tan, fine sand, saturated, no odor						
70	8,10,12	9:10	0.0		69-70.5' SAND, tan, fine sand, saturated, no odor						
75											
NOTES:											

LOGGED BY: BHM DATE: 6/30/2009 APPROVED BY: BHM RG#: 5649

CLIENT:				_	PROJECT		DRILL HOLE: MW-4
DRILLING			Cascade Di		, sauta r	e springs,	TYPE OF RIG: CME-85
DRILLING		_			llow Sten	1 Auger	HOLE DIAMETER: 8"
DRIVE WEIGHT/HEIGHT OF DROP: 140 # @ 30"							REFERENCE OR DATUM: Surface
START DA		6/30/20					COMPLETION DATE: 6/30/2009
DEPTH IN FEET	GRAPHIC BORING LOG	SAMPLE SIZE AND LOCATION	BLOW COUNTS PER 0.5 FT	TIME	SOIL VAPOR READING PPM	UNIFIED SOIL CLASSIFICATION SYSTEM	DESCRIPTION
Δ.	9 6	S ≪	<u></u>	interiori	: W: X	ML	
5		X	10,10,10	11:05	0.0	SM	4-5.5' VERY SANDY SILT, rust, fine sand, moist, no odor
10 =		X	7,10,12	11:10	0.0	SP	9-10.5' VERY SILTY SAND, rust, fine sand, moist, no odor
15		X	7,13,14	11:15	0.0		14-15.5' SAND, tan, medium to fine sand, moist, no odor
20		X	10,12,14	11:20	0.0		19-20.5' SAND, tan, fine sand, moist, no odor
25			14,15,17	11:25	0.0		24-25.5' SAND, tan, fine sand, moist, no odor
30			14,15,18	11:30	0.0		29-30.5' SLIGHTLY SILTY SAND, brown, coarse to fine sand, moist, no odor
35			50	11:35	0.0		34-35.5' SLIGHTLY SILTY SAND, brown, coarse to fine sand, very moist, no odor
1						GW	
NOTES	100						

Note: This boring log represents conditions only at time and location indicated, Subsurface conditions may differ at other locations and times.

LOGGED BY: BHM DATE: 6/30/2009 APPROVED BY: BHM RG#: 5649

CLIENT	Pateouras	Pronerts	,		PROJECT	`NO: 1	576 DRILL HOLE: MW-4					
	CLIENT: Patsouras Property PROJECT NO: 1576 DRILL HOLE: MW-4 ITE LOCATION: 11630-11700 Burke Street, Santa Fe Springs, CA											
	ORILLING COMPANY: Cascade Drilling TYPE OF RIG: CME-85											
DRILLING		_	<u></u>		llow Stem	HOLE DIAMETER: 8"						
	DRIVE WEIGHT/HEIGHT OF DROP: 140 # @ 30"						REFERENCE OR DATUM: Surface					
START DA	ATE:	6/30/20	09	-			COMPLETION DATE: 6/30/2009					
DEPTH IN FEET	GRAPHIC Boring Log	SAMPLE SIZE AND LOCATION	BLOW COUNTS PER 0.5 FT	TIME	SOIL VAPOR READING, PPM	UNIFIED SOIL CLASSIFICATION SYSTEM	DESCRIPTION					
40	5		7,10,15	11:40	0.0		39-40.5' GRAVELY SAND, tan, coarse to fine sand,					
45	0() 0°0		12,13,15	11:45	0.0		well rounded gravel, slightly moist, no odor 44-45.5' GRAVELY SAND, tan, coarse to fine sand, well rounded gravel, slightly moist, no odor					
50	00		50	11:50	NES		49-50.5' GRAVELY SAND, tan, coarse to fine sand, well rounded gravel, slightly moist, no odor					
55 —		X	13,14,17	11:55	0.0	ML	54-55.5' VERY SANDY CLAYEY SILT, olive, coarse to fine sand, very moist, no odor					
60		X	13,14,17	12:00	0.0	SP	59-60.5' SILTY SAND, brown, fine sand, moist, no odor					
65 —			10,14,15	12:05	0.0		64-65.5' SAND, tan, fine sand, very moist, no odor					
70		X	18,20,27	12:10	0.0		69-70.5' SAND, tan, fine sand, saturated, no odor					
75			12,13,15	13:00	0.0		74-75.5' SAND, tan, fine sand, saturated, no odor					
Nome	: NES = 1	Not Fre	8,10,12		0.0		79-80.5' SAND, tan, fine sand, saturated, no odor					
NOTES	. INES = 1	HOLEHO	ogu samp	16		_						

CLIENT: Larry Patsouras EAI PROJECT NO.: 1576 DRILL HOLE: MW-1

SITE LOCATION: 11700 Burke Street, Santa Fe Springs, CA 90670

DRILLING CO: ABC Liovin Drilling

TYPE OF RIG: CME 75

DRILLING METHOD/EQUIPMENT: Hollow Stem Auger DRIVE WEIGHT: 140 lbs. at 30"

HOLE DIAMETER: 8 inches

START DATE: October 3, 1995

REFERENCE OR DATUM: Ground Surface
COMPLETION DATE: October 3, 1995

LOGGED BY: SAB APPROVED BY: EHL RCE NO. 24274

DEPTH INTERVAL IN FEET	BEOW COUNTS PER 0.5 FEET	TIME	TEV SOIL VAPOR READING (ppm)	UNIFIED SOIL GLASS SYSTEM	DESCRIPTION
0-0.3"					ASPHALT
4-5.5'	9/15/18	08:25	95	CL	SILTY CLAY, reddish brown, moist, slight hydrocarbon odor.
9-10.5'	3/7/6	08:30	110	CL	SILTY CLAY, reddish brown, moist, no hydrocarbon odor.
14-15.51	5/10/15	08:35	25	SP	SAND, tan, fine to medium, moist, slight hydrocarbon odor.
19-20.5	6/25/19	08:40	98	SP	SAND, tan, fine to medium, moist, no hydrocarbon odor.
24-25.5'	18/30/50	08:45	95	SP	SAND, tan, coarse, some gravel, moist, no hydrocarbon odor.
29-30.5	23/31/47	08:50	110	SP	SAND, reddish brown, coarse, some gravel, moist, no hydrocarbon odor.
34-35.5'	20/36/37	08:55	110	CL	SILTY CLAY, reddish brown, moist, no hydrocarbon odor.
40-40.5'	7/31/50	09:05	110	SP	SAND, Ian, coarse, some gravel, saturated, no hydrocarbon odor.
44-45.5	6/9/11	09:10	95	CL	CLAY, brown, some fine sand, samrated, no hydrocarbon odor.

LITHOLOGIC BORING LOG

Page 2 of 2

CLIENT: Larry Patsouras EAI PROJECT NO.: 1576 DRILL HOLE: MW-1

SITE LOCATION: 11700 Burke Street, Santa Fe Springs, CA 90670

DRILLING CO: ABC Liovin Drilling TYPE OF RIG: CME 75

DRILLING METHOD/EQUIPMENT: Hollow Stem Auger DRIVE WEIGHT: 140 lbs. at 30"

HOLE DIAMETER: 8 inches REFERENCE OR DATUM: Ground Surface START DATE: October 3, 1995 COMPLETION DATE: October 3, 1995

LOGGED BY: SAB APPROVED BY: EHL RCE NO. 24274

BLOW TEV SOIL UNIFIED
DEPTH COUNTS VAPOR SOIL
DYTERVAL PER READING CLASS

IN FEET 0.5 FEET TIME (ppm) SYSTEM DESCRIPTION

50-55' SP SAND, tan, fine, saturated, no hydrocarbon odor.

NOTES: GROUND WATER WAS ENCOUNTERED AT 40 FEET BGS.

THIS BORING WAS CONVERTED IN WELL MW-1 (SEE MW-1 WELL CONSTRUCTION DETAILS FOR SPECIFICS)

ABC STAFF: DAVE MOLANO (DRILLER), CHUCK PARRA AND RAMON SANCHEZ (HELPERS)

THIS BORING LOG REPRESENTS CONDITIONS ONLY AT TIME AND LOCATION INDICATED. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND TIMES.

BHM:WORD:1576-HW1

Property Name	Project #	Client	Date	Time
Burke Street	588-41008	Tokai Bank	August 3, 1994	8:30 AM
Boring #	Total Depth	Driller	Equipment Used	Weather
B-1	15'	Discovery	B-47 with 7" HSA	Sunny/Warm

TPH(g) (ppm)	TPH (Lub. Oil) (ppm)	PID (ppm)	Blow Counts (per ft.)	Graphic Log	Depth (feet)	
<0.1	<3.0	ND	39		٥	@3" asphalt Silly clay (CL), reddish brown, dry-moist, hard
NA	NA	ND	40		5-	
NA	NA	ND	58		10-	Silly fine sand, (SM) brownish yellow, dry, very dense
NA	NA	ND	94		15	Sand, medium (SP), light brown, dry, very dense
		es v	The second secon		20-	TD @ 15' No Groundwater

Property Name	Project #	Client	Date	Time
Burke Street	588-41008	Tokai Bank	August 3, 1994	9:15 AM
Boring #	Total Depth	Driller	Equipment Used	Weather
B-2	15'	Discovery	B-47 with 7" HSA	Sunny/Warm

TPH(g) (ppm)	TPH (Lub. Oii) (ppm)	P(D (ppm)	Blow Counts (per ft.)	Graphic Log	Depth (feet)	
<0.1	<3.0	ND	34		0-	@3" asphalt Clayey silt (ML), dark gray and reddish brown, moist, dense
NA	NA	ND	44 .		5-	Silty clay (CL), reddish brown, dry-moist, hard
NA	NA	ND	67		10	Silty fine sand (SM), reddish brown, dry, very dense
NA	NA	ND	80		15-	Sand, medium (SP), light brown, moist, very dense
					20-	TD @ 15' No Groundwater

A. State

Property Name	Project #	Client	Date	Time
Burke Street	588-41008	Tokai Bank	August 3, 1994	10:45 AM
Boring #	Total Depth	Driller	Equipment Used	Weather
B-3	15'	Discovery	8-47 with 7" HSA	Sunny/Warm

TPH(g) (ppm)	TPH (Lub. Oil) (ppm)	PID (ppm)	Blow Counts (per ft.)	Graphic Log	Depth (feet)	
<0.1	<3.0	ND	79		0	@3" asphalt Silty clay (CL), reddish brown, dry-moist, hard
NA	NA	ND	114		5-	
NA	NA	ND	33		10-	Silty fine sand (SM) yellowish brown, dry - moist, dense
NA	NA	ND	30	-/-	15	Sand, fine (SP), light brown, moist, medium dense to dense
						TD @ 15' No Groundwater
					20-	

Property Name	Project #	Client	Date	Time
Burke Street	588-41008	Tokai Bank	August 3, 1994	11:55 AM
Boring #	Total Depth	Driller	Equipment Used	Weather
B-4	15'	Discovery	B-47 with 7" HSA	Sunny/Warm

TPH(g) (ppm)	TPH (Lub. Oil) (ppm)	PID (ppm)	Blow Gra Counts Log (per ft.)	aphic g	Depth (feet)	
<0.1	<3.0	ND	120		c-	@3" asphalt Sand, fine - crs (SW), yellowish brown, moist, very dense, little clay, few pea gravel
NA	NA	ND	71.		5-	Silty clay (CL) yellowish brown, dry - moist, hard, organic odor
NA	NA	ND	79		10-	Silty fine sand (SM), yellowish brown, dry - moist, very dense
NA	NA	ND	74		15-	Sand, fine (SP), yellowish brown, dry - moist, very dense
						TD @ 15' No Groundwater
						20-

Property Name	Project #	Client	Date	Time
Burke Street	588-41008	Tokai Bank	August 4, 1994	6;25
Boring #	Total Depth	Driller	Equipment Used	Weather
8-5	15'	Discovery	B-6' with 7" HSA	Overcast/Cool

TPH(g) (ppm)	TPH (Lub. Oil) (ppm)	PID (ppm)	Blow Counts (per ft.)	Graphic Log	Depth (feet)	
<0.1	<3.0	ND	9		0-	@3" asphalt Clayey silt (ML), reddish brown, moist, loose
NA	NA	ND	NĄ.		5-	
NA	NA	ND	24		10-	Silty fine sand (SM), reddish brown, moist, medium dense
NA	NA	ND	NA -	<u>//:3</u>	15	Sand, fine (SP), light brown, dry - moist
						TD @ 15' No Groundwater
					20-	

Property Name Burke Street	Project # 588-41008	Client Tokai Bank	Date August 3, 1994	Time 7:48
Boring #	Total Depth		Equipment Used	Weather
B-6	15'	Discovery	B-6' with 7" HSA	Sunny/Hot

TPH(g) (ppm)	TPH (Lub. Oil) (ppm)	PID (ppm)	Blow Counts (per ft.)	Graphic Log	Depth (feet)	
NA	NA	ND	17		0-	@3" asphalt Sandy clay (CL), reddish brown, moist, very stiff, plastic
NA	NA	ND	18		5-	
<0,1	<3.0	ND	39		10-	Silty fine sand (SM), yellowish brown, moist, dense
NA	NA	ND	58		15-	Sand, fine (SP), light brown, dry - moist, very dense
						TD @ 15' No Groundwater
					20-	

.

Property Name	Project #	Client	Date	Time
Burke Street	588-41008	Tokai Bank	August 3, 1994	8: 40
Boring #	Total Depth	Driller	Equipment Used	Weather
B-7	35'	Discovery	B-6' with 7" HSA	Sunny/Warm

TPH(g) (ppm)	TPH (Lub. Oil) (ppm)	PID (ppm)	Blow Counts (per ft.)	Graphic Log	Depth (feet)	
NA	NA	ND	20		0:	@3" asphalt Sandy clay (CL), reddish brown, moist, very stiff,
NA	NA	ND	22		5	Sility .
159	31,330	20.0	22		10-	Sandy silt (ML), greenish gray, moist, medium dense, strong hydrocarbon odor
<1.0	12,330	ND	NA		15-	Sand, fine - medium (SP), light brown, moist slight hydrocarbon odor
NA	NA	ND	76		207	
<1.0	18,380	ND	120		25-	No odor
NA	NA	ND	120		30-	
<1.0	11.7	ND	30		35-	Silty clay (CL), yellowish brown, moist, very stiff - hard, plastic
						TD @ 35' No Groundwater

Property Name	Project #	Client	Date	Time
Burke Street	588-41008	Tokai Bank	August 3, 1994	11:16
Boring #	Total Depth	Driller	Equipment Used	Weather
B-8	15'	Discovery	8-61 with 7" HSA	, Sunny/Warm

TPH(g) (ppm)	TPH (Lub. Oil) (ppm)	PID (ppm)	Blow Counts (per ft.)	Graphic Log	Depth (feet)	
<0.1	1,440	ND	100		0-	Sandy clay (CL), reddish brown, moist, hard, slight hydrocarbon odor
NA	NA	ND	39 ,		5-	Hydrocarbon odor ,
NA	NA	ND	24		10-	Silty fine sand (SM), reddish brown, dry, medium dense
NA	NA	ND	39		15	Sand, fine (SP), light brown, dry - moist, dense
						TD @ 15' No Groundwater

Property Name	Project #	Client	Date	Time
Burke Street	588-41008	Tokai Bank	August 3, 1994	12:00
Boring #	Total Depth	Driller	Equipment Used	Weather
HA-1	8'	PSI	Hand Auger	Sunny & Hot

TPH(g) (ppm)	TPH (Lub. Oil) (ppm)	PID (ppm)	Blow Counts (per ft.)	Graphic Log	Depth (feet)	
<0.1	30,000	ND	NA		0+	Sandy silt (ML), dark brown, dark gray, moist, slight hydrocarbon odor @3' silty fine sand, reddish brown, moist
NA	NA	ND	NA ·		5	·
NA	NA	ND	NA		10-	
						TD @ 8' No Groundwater

..

•

Property Name	Project #	Client	Date	Time
Burke Street	588-41008	Tokai Bank	August 3, 1994	14:00
Boring #	Total Depth	Driller	Equipment Used	Weather
HA-2	10'	PSI	Hand Auger	Sunny & Hot

TPH(g) (ppm)	TPH (Lub. Oil) (ppm)	PID (ppm)	Blow Counts (per ft.)	Graphic Log	Depth (feet)	
NA	NA	ND	NA .		0-	@3" concrete Sandy silt (ML), dark brown, moist, dense
NA	NA	ND	NA.		5-	Silt (ML) reddish brown, moist, dense
<0.1	<3.0	ND	NA E		10-	Silty fine sand (SM), brown, moist, dense
						TD @ 10' No Groundwater
					,	*
					15{	·

•

.

..

Property Name	Project #	Client	Date	Time
Burke Street	588-41008	Tokai Bank	August 3, 1994	3:00
Boring #	Total Depth	Oriller	Equipment Used	Weather
HA-3	4.5'	PSI	Hand Auger	Sunny/Hot

TPH(g) (ppm)	TPH (Lub. Oil) (ppm)	PID (ppm)	Blow Counts (per ft.)	Graphic Log	Depth (feet)	
NA	NA	מא	NA (0	@3" concrete, approximately 6" of void space beneath concrete Silty clay (CL), mottled reddish brown and dark gray, moist, very stiff
<0.1	<3.0	ND	NA NA	777777	5-	Refusal, metal obstruction
					10-	
						TD @ 4.5' No Groundwater
		1			ı	

Property Name	Project #	Client	Date	Time
Burke Street	588-41008	Tokai Bank	August 3, 1994	12:50
Boring #	Total Depth	Driller	Equipment Used	Weather
HA-4	10'	PSI	Hand Auger	Sunny/Hot
				-

TPH(g) (ppm)	TPH (Lub. Oil) (ppm)	PID (ppm)	Blow Counts (per ft.)	Graphic Log	Depth (feet)	
<0.1	<3.0	ND	NA .		0-	@3" asphalt Sandy silt (ML), reddish brown, moist
NA	NA	ND	NA :		5-	Silty fine sand (SM), yellowish brown, moist, very dense
NA	NA	ND	NA -		10 -	
						TD @ 10' No Groundwater

٠.

:

.

APPENDIX B

Well Construction Details

ENVIRONIMENTAL AUDIT, INC.

MONITORING WELL CONSTRUCTION DETAIL 11700 Burke Street Santa Fe Spring, California 90670

Well Construction Details

MW-1D 11630 - 11750 Burke Street, Santa Fe Springs, CA Santa Fe Springs, California

MONITORING WELL CONSTRUCTION DETAIL

11700 Burke Street Santa Fe Spring, California 90670

Project No.1576

Well Construction Details

MW-3

11630 - 11750 Burke Street, Santa Fe Springs, CA Santa Fe Springs, California

Well Construction Details

MW-4

11630 - 11750 Burke Street, Santa Fe Springs, CA Santa Fe Springs, California